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Part 1

 Background
 A brief introduction of computer vision
 Traditional image recognition and retrieval
 Deep learning and convolutional neural networks

Introduction
 Fine-grained images vs. generic images
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 Challenges of fine-grained image analysis
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Background

What is computer vision?

What we see

The goal of computer vision 

• To extract “meaning” from pixels 

What we see What a computer sees 
Source: S. Narasimhan 

What a computer sees
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Background (con’t)

Why study computer vision?

CV is useful

CV is interesting

CV is difficult

…

Finger reader

Image captioning

Crowds and occlusions
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Background (con’t)

Successes of computer vision to date

Optical character recognition Biometric systems

Face recognition Self-driving cars
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Top-tier CV conferences/journals and prizes

Marr Prize
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Traditional image recognition and image retrieval

Tradi=onal$Approaches$
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Computer vision features
Computer$Vision$Features$

SIFT$

HoG$ RIFT$

Textons$

GIST$

Deep learning

Background (con’t)

http://www.weixiushen.com/

http://www.weixiushen.com/


Deep learning and convolutional neural networks
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Figures are courtesy of L. Fei-Fei.

“Rome was not built in one day!”
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All neural net activations arranged in 3-dimension:

与之类似，若三维情形下的卷积层 l 的输入张量为 xl ∈ RHl×W l×Dl
，

则该层卷积核为 f l ∈ RH×W×Dl
。在三维时卷积操作实际上只是将二维卷

积扩展到了对应位置的所有通道上（即 Dl），最终将一次卷积处理的所有

HWDl 个元素求和作为该位置卷积结果。如图2-5所示。

三维场景卷积操作 卷积特征

图 ��� 三维场景下的卷积核与输入数据。图左卷积核大小为 3 × 4 × 3，图右为在
该位置进行卷积操作后得到的 1 × 1 × 1的输出结果

进一步地，若类似 f l这样的卷积核有D个，则在同一个位置上可得到

1 × 1 × 1 × D 维度的卷积输出，而 D 即为第 l + 1层特征 xl+1 的通道数

Dl+1。形式化的卷积操作可表示为：

yil+1,jl+1,d =
H∑

i=0

W∑

j=0

Dl∑

dl=0

fi,j,dl,d × xlil+1+i,jl+1+j,dl , (2.1)

其中，(il+1, jl+1)为卷积结果的位置坐标，满足：

0 ! il+1 < H l −H + 1 = H l+1, (2.2)

0 ! jl+1 < W l −W + 1 = W l+1. (2.3)

需要指出的是，式2.1中的 fi,j,dl,d 可被视作学习到的权重（weight），可以

发现该项权重对不同位置的所有输入都是相同的，这便是卷积层“权值共

享”（weight sharing）特性。除此之外，通常还会在 yil+1,jl+1,d 上加入偏置

项（bias term）bd。在误差反向传播时可针对该层权重和偏置项分别设置随

机梯度下降的学习率。当然根据实际问题需要，也可以将某层偏置项设置
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Deep learning and convolutional neural networks
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Unit processing of CNNs

2 卷积神经网络基本部件

1 2 3 4 5

6 7 8 9 0

9 8 7 6 5

4 3 2 1 0

1 2 3 4 5

1 0 1

1 0 1

0 1 0

卷积核 输入数据

图 ��� 二维场景下的卷积核与输入数据。图左为一个 3×3的卷积核，图右为 5×5
的输入数据

第一次卷积操作从图像 (0, 0)像素开始，由卷积核中参数与对应位置图

像像素逐位相乘后累加作为一次卷积操作结果，即 1 × 1 + 2 × 0 + 3 × 1 +

6 × 0 + 7 × 1 + 8 × 0 + 9 × 1 + 8 × 0 + 7 × 1 = 1 + 3 + 7 + 9 + 7 = 27，如

图2-4a所示。类似地，在步长为 1时，如图2-4b~图2-4d所示，卷积核按照

步长大小在输入图像上从左至右、自上而下依次将卷积操作进行下去，最

终输出 3 × 3大小的卷积特征，同时该结果将作为下一层操作的输入。
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9 8 7 6 5

第1次卷积操作 卷积后结果（卷积特征）

(a)第一次卷积操作及得到的卷积特征
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第2次卷积操作 卷积后结果（卷积特征）

(b)第二次卷积操作及得到的卷积特征
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28 29

第3次卷积操作 卷积后结果（卷积特征）

(c)第三次卷积操作及得到的卷积特征
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23
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第9次卷积操作 卷积后结果（卷积特征）

(d)第九次卷积操作及得到的卷积特征

图 ��� 卷积操作示例
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Convolution

2 卷积神经网络基本部件

2.4.1 什么是汇合

遵循上一节的记号，第 l 层汇合核可表示为 pl ∈ RH×W×Dl
。平均值

（最大值）汇合在每次操作时，将汇合核覆盖区域中所有值的平均值（最大

值）作为汇合结果，即：

Average-pooling: yil+1,jl+1,d =
1

HW

∑

0!i<H,0!j<W

xlil+1×H+i,jl+1×W+j,dl ,

(2.5)

Max-pooling: yil+1,jl+1,d = max
0!i<H,0!j<W

xlil+1×H+i,jl+1×W+j,dl , (2.6)

其中，0 ! il+1 < H l+1，0 ! jl+1 < W l+1，0 ! d < Dl+1 = Dl。

图2-7所示为 2 × 2大小、步长为 1的最大值汇合操作示例。
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第1次最大值汇合操作 汇合后结果（汇合特征）

(a)第 1次汇合操作及得到的汇合特征

7
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1 3 4 52

7 8 9 9

9 8 9 9

9 8 7 6

4 3 4 5

第16次最大值汇合操作 汇合后结果（汇合特征）

(b)第 16次汇合操作及得到的汇合特征

图 ��� 最大值汇合操作示例

除了上述最常用的两种汇合操作外，随机汇合（stochastic-pooling）[94]

则介于二者之间。随机汇合操作非常简单，只需对输入数据中的元素按照

一定概率值大小随机选择，其并不像最大值汇合那样永远只取那个最大值

元素。对随机汇合而言，元素值大的响应（activation）被选中的概率也大，

反之亦然。可以说，在全局意义上，随机汇合与平均值汇合近似；在局部意

义上，则服从最大值汇合的准则。
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Pooling

ReLU(x) = max {0, x} (8.3)

=

⎧
⎪⎨

⎪⎩

x x ! 0

0 x < 0
. (8.4)

与前两个激活函数相比，ReLU函数的梯度在 x ! 0时为 1，反之为 0（如

图8-3所示）；x ! 0部分完全消除了 Sigmoid型函数的梯度饱和效应。在计

算复杂度上，ReLU函数也相对前两者的指数函数计算更为简单。同时，实

验中还发现 ReLU函数有助于随机梯度下降方法收敛，收敛速度约快 6倍

左右 [52]。不过，ReLU函数也有自身的缺陷，即在 x < 0时，梯度便为 0。

换句话说，对于小于 0的这部分卷积结果响应，它们一旦变为负值将再无

法影响网络训练——这种现象被称作“死区”。
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(a) ReLU函数
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(b) ReLU函数梯度

图 ��� 3F-6函数及其函数梯度

8.4 Leaky ReLU

为了缓解“死区”现象，研究者将 ReLU函数中 x < 0的部分调整为

f(x) = α · x，其中 α为 0.01或 0.001数量级的较小正数。这种新型的激活

函数被称作 Leaky ReLU[64]：

94

Non-linear activation function

Background (con’t)
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CNN architecture

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 201563
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ReLU

POOLCONV
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CONV
ReLU

POOL CONV
ReLU

CONV
ReLU

POOL FC
(Fully-connected)

Figures are courtesy of L. Fei-Fei.
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Meta class

Bird Dog Orange……

Traditional image recognition
(Coarse-grained) Fine-grained image recognition

Dog

Husky Satsuma Alaska……

Introduction

Fine-grained images vs. generic images
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Various real-world applications
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Various real-world applications
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Results

1. Megvii Research Nanjing

a. Error = 0.10267

2. Alibaba Machine Intelligence Technology Lab

a. Error = 0.11315

3. General Dynamics Mission Systems

a. Error = 0.12678

FGVC6

Sponsored by

This certificate is awarded to 

Bo-Yan Zhou, Bo-Rui Zhao, Quan Cui, Yan-Ping Xie, 
Zhao-Min Chen, Ren-Jie Song, and Xiu-Shen Wei

Megvii Research Nanjing

iNat2019

winners of the iNaturalist 2019 image 
classification challenge held in conjunction with 

the FGVC workshop at CVPR 2019. 

Genera with at least 10 species
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Herbarium Challenge 2019 (top teams)
● #1 Megvii Research Nanjing (89.8%)

○ Boyan Zhou, Quan Cui, Borui Zhao, Yanping Xie, 
Renjie Song

● #2 PEAK (89.1%)
○ Chunqiao Xu, Shao Zeng, Qiule Sun, Shuyu Ge, 

Peihua Li (Dalian University of Technology)

● #3 Miroslav Valan (89.0%)
○ Swedish Museum of Natural History

● #4 Hugo Touvron (88.9%)
○ Hugo Touvron and Andrea Vedaldi (Facebook AI 

Research)

Various real-world applications

Introduction (con’t)
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Herbarium Challenge 2019
Kiat Chuan Tan1, Yulong Liu1, Barbara Ambrose2, Melissa Tulig2, Serge Belongie1,3

1Google Research, 2New York Botanical Garden, 3Cornell Tech

Google Research

, Xiu-Shen Wei
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Challenge of fine-grained
image analysis

Small inter-class variance
Large intra-class variance

Fine-grained Image Classification via Combining Vision and Language

Xiangteng He and Yuxin Peng⇤

Institute of Computer Science and Technology, Peking University
hexiangteng@pku.edu.cn, pengyuxin@pku.edu.cn

Abstract

Fine-grained image classification is a challenging task
due to the large intra-class variance and small inter-class
variance, aiming at recognizing hundreds of sub-categories
belonging to the same basic-level category. Most existing
fine-grained image classification methods generally learn
part detection models to obtain the semantic parts for bet-
ter classification accuracy. Despite achieving promising
results, these methods mainly have two limitations: (1)
not all the parts which obtained through the part detec-
tion models are beneficial and indispensable for classifi-
cation, and (2) fine-grained image classification requires
more detailed visual descriptions which could not be pro-
vided by the part locations or attribute annotations. For ad-
dressing the above two limitations, this paper proposes the
two-stream model combining vision and language (CVL)
for learning latent semantic representations. The vision
stream learns deep representations from the original visual
information via deep convolutional neural network. The
language stream utilizes the natural language descriptions
which could point out the discriminative parts or charac-
teristics for each image, and provides a flexible and com-
pact way of encoding the salient visual aspects for distin-
guishing sub-categories. Since the two streams are comple-
mentary, combining the two streams can further achieves
better classification accuracy. Comparing with 12 state-of-
the-art methods on the widely used CUB-200-2011 dataset
for fine-grained image classification, the experimental re-
sults demonstrate our CVL approach achieves the best per-
formance.

1. Introduction

Fine-grained image classification aims to recognize sub-
categories under some basic-level categories. Models of
fine-grained image classification have made great progress
in recent years[1, 2, 3, 4, 5], due to the progress of deep
neural networks. And on the data side, more fine-grained

⇤Corresponding author.

Heermann Gull

Herring Gull

Slaty-backed Gull

Western Gullinter-class variance

intra-class variance

Figure 1. Examples from CUB-200-2011. Note that it is a techni-
cally challenging task even for humans to categorize them due to
large intra-class variance and small inter-class variance.

domains have been covered, such as bird types [6, 7], dog
species [8], plant breeds [9] , car types [10] and aircraft
models [11].It is easy for an inexperienced person to recog-
nize basic-level categories such as bird, flower and car, but
highly hard to recognize 200 or even more sub-categories.
Consequently, fine-grained image classification is a techni-
cally challenging task, due to the large intra-class variance
and small inter-class variance, as shown in Figure 1.

The sub-categories are generally same in global appear-
ance, and distinguished by the subtle and local differences,
such as the color of abdomen, the shape of toe and the tex-
ture of feather for bird. These subtle differences are located
at the regions of object or its parts, so the localization of ob-
ject and its parts is crucial for fine-grained image classifica-
tion. A two-stage learning framework is adopted by most of

ar
X

iv
:1

70
4.

02
79

2v
2 

 [c
s.C

V
]  

3 
M

ay
 2

01
7

Introduction (con’t)

Figures are courtesy of [X. He and Y. Peng, CVPR 2017]. http://www.weixiushen.com/

http://www.weixiushen.com/


The key of fine-grained image analysis
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Fine-grained benchmark datasets

2 . 2 细粒度级别图像分析研究进展 21

问题将更单纯更本质地针对单个物体类别内进⾏，不涉及多类细粒度级别物体

的交叉检索。

2 . 2 . 3 细粒度级别图像数据集

“巧妇难为⽆⽶之炊”，特别是深度学习模型需要⼤量甚⾄海量数据驱动⽅

可取得较满意性能，本节介绍细粒度级别图像任务中常⽤的⼀些数据集：鸟

类数据集 CUB200-2011[75] 和 Birdsnap[6]，狗类数据集 Stanford Dogs[38]，花类

数据集 Oxford Flowers 102[54]，飞机类数据集 Aircrafts[51]，车类数据集 Stanford

Cars[40] 等。

2 . 2 . 3 . 1 细粒度级别鸟类数据集

CUB200-2011[75] 数据集是加州理⼯学院于 2010 年提出的细粒度级别图像

数据集，也是⽬前最为常⽤的该领域图像数据集。该数据集共有 200 种鸟类⼦

类，11788 张图像（其中含 5994 张训练图像和 5794 张测试图像），每张图提

供了图像级别标记、物体边界框、部件关键点和鸟类属性信息。该数据集图像

⽰例如图 2 12所⽰。此外，Birdsnap[6] 是 2014 年哥伦⽐亚⼤学的研究者提出的

⼤规模鸟类细粒度级别图像数据集，共 500 种鸟类⼦类，49829 张图像（其中

47386张训练图像和 2443张测试图像），与 CUB200-2011数据集类似，每张图

提供了图像级别标记、物体边界框、部件关键点和鸟类属性信息。

图 2 12: CUB200-2011[75] 数据集图像⽰例。

CUB200-2011

[C. Wah et al., CNS-TR-2011-001, 2011]

11,788 images, 200 fine-grained classes
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2 . 2 . 3 . 2 细粒度级别狗类数据集

Stanford Dogs[38] 数据集是斯坦福⼤学于 2011年提出的细粒度级别图像数

据集。该数据集共含 120种狗类⼦类的 20580张图像，每张图像提供了图像级

别标记和物体边界框，但未提供部件关键点和鸟类属性信息等精细级别监督信

息。该数据集图像⽰例如图 2 13所⽰。

图 2 13: Stanford Dogs[38]数据集图像⽰例。

2 . 2 . 3 . 3 细粒度级别花类数据集

Oxford Flowers 102[54] 数据集是英国⽜津⼤学视觉组于 2008年提出的花类

细粒度级别图像数据集。该数据集共含 102种花类⼦类，共 8189张图像，每张

图像除提供了图像级别标记外，还提供了图像前景背景分割的像素级别标记。

该数据集图像⽰例如图 2 14所⽰。

[A. Khosla et al., CVPR Workshop 2011]

Stanford Dogs

20,580 images
120 fine-grained classes

Introduction (con’t)
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Figure 3. Images from the fine-grained categorization datasets considered: Caltech-UCSD 200 birds dataset (top left), Oxford 37 cats and
dogs dataset (top right), Oxford 102 flowers dataset (bottom left) and Stanford 120 dogs dataset (bottom right). One example image per
class is shown (flowers and cats and dogs datasets show fewer classes).

3.4. Unsupervised region pooling

Pose-normalized pooling has been introduced re-
cently [31] and has shown significant promise in advancing
fine-grained classification. Since the original work [31] re-
quired manual annotation of object parts, which may not be
readily available for all datasets, or could be costly espe-
cially for the larger datasets, we considered the algorithm
of Yang et al. [28] which selects the features in an unsuper-
vised manner. We adapted this algorithm to work with the
LLC encoding feature representation.

The algorithm proceeds by learning a set of regions (tem-
plates) T1, ...TK that are common across classes. Introduc-
ing auxiliary variables vIi , i = 1 . . .K as indicator variables
whether region i is found in image I and lIi , i = 1 . . .K as
locations where the regions are found, we maximize:

max
T,v,l

X

I

{
KX

i=1

vi(1�kTi�R(I, lIi )k)�
KX

i=1

KX

j=1

vIi v
I
j d(l

I
i , l

I
j )}

where R(I, lIi ) denotes the region of image I at location
lIi , d(lIi , lIj ) is a penalty to limit overlap between regions:
d(lIi , l

I
j ) = 1, if the area of overlap between candidate

patches at locations lIi and lIj is larger than a threshold, and
0, otherwise. One notable difference in our implementation
is that we relaxed the constraints on features’ locations, al-
lowing features to be found anywhere in the image. We also
did not use the co-occurrence criterion of [28]. In addition,
to accommodate our baseline feature space which is high
dimensional, we limited the number of pooled regions to 10
per dataset, collected at a single scale, instead of 34, col-
lected at two scales, as suggested by [28]. We also applied
this algorithm to both datasets that have and that do not have
bounding box information.

3.5. Implementation details

This section describes specific implementation details.
In our experiments, all images are resized to 500 pixels at

Oxford Flowers 8,189 images, 102 fine-grained classes

[M.-E. Nilsback and A. Zisserman, CVGIP 2008]
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图 2 15: Aircrafts [51]数据集图像⽰例。

图 2 16: Stanford Cars [40]数据集图像⽰例。

Aircrafts

10,200 images
100 fine-grained classes

[S. Maji et al., arXiv: 1306.5151, 2013]
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Stanford Cars
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图 2 15: Aircrafts [51]数据集图像⽰例。

图 2 16: Stanford Cars [40]数据集图像⽰例。

16,185 images, 196 fine-grained classes

[J. Krause et al., ICCV Workshop 2013]
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Many papers published on top-tier conf./journals
CVPR, ICCV, ECCV, IJCAI, etc.
TPAMI, IJCV, TIP, etc.

Many frequently held workshops
Workshop on Fine-Grained Visual Categorization
…

Many academic challenges about fine-grained tasks
The Nature Conservancy Fisheries Monitoring
iFood Classification Challenge
iNature Classification Challenge
…
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Deep learning for image retrieval

Figure 9: Sample search results using CroW features compressed to just d “ 32 dimensions. The query image is shown at
the leftmost side with the query bounding box marked in a red rectangle.

Figure 10: A sample search result using CroW features with d “ 512 dimensions. Below each result is the corresponding
spatial weight map. The query image is shown at the leftmost side with the query bounding box marked in a red rectangle.

Fine-grained image retrieval (con’t)
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Fine-grained image retrieval (con’t)
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Selective Convolutional Descriptor Aggregation for
Fine-Grained Image Retrieval

Xiu-Shen Wei, Jian-Hao Luo, Jianxin Wu, Member, IEEE, Zhi-Hua Zhou, Fellow, IEEE

Abstract—Deep convolutional neural network models pre-
trained for the ImageNet classification task have been successfully
adopted to tasks in other domains, such as texture description and
object proposal generation, but these tasks require annotations
for images in the new domain. In this paper, we focus on a
novel and challenging task in the pure unsupervised setting:
fine-grained image retrieval. Even with image labels, fine-grained
images are difficult to classify, let alone the unsupervised retrieval
task. We propose the Selective Convolutional Descriptor Aggre-
gation (SCDA) method. SCDA firstly localizes the main object(s)
in fine-grained images, a step that discards noisy background
and keeps useful deep descriptors. The selected descriptors are
then aggregated and dimensionality reduced into a short feature
vector using the best practices we found. SCDA is unsupervised,
using no image label or bounding box annotation. Experiments
on six fine-grained datasets confirm the effectiveness of SCDA for
fine-grained image retrieval. Besides, visualization of the SCDA
features shows that they correspond to visual attributes (even
subtle ones), which might explain SCDA’s high mean average
precision in fine-grained retrieval. Moreover, on general image
retrieval datasets, SCDA achieves comparable retrieval results
with state-of-the-art general image retrieval approaches.

Index Terms—Fine-grained image retrieval, selection and ag-
gregation, unsupervised object localization.

I. INTRODUCTION

AFTER the breakthrough in image classification using
Convolutional Neural Networks (CNN) [1], pre-trained

CNN models trained for one task (e.g., recognition or de-
tection) have also been applied to domains different from
their original purposes (e.g., for describing texture [2] or
finding object proposals [3]). Such adaptations of pre-trained
CNN models, however, still require further annotations in the
new domain (e.g., image labels). In this paper, we show that
for fine-grained images which contain only subtle differences
among categories (e.g., varieties of dogs), pre-trained CNN
models can both localize the main object and find images in
the same variety. Since no supervision is used, we call this
novel and challenging task fine-grained image retrieval.

In fine-grained image classification [4], [5], [6], [7], [8],
[9], categories correspond to varieties in the same species.
The categories are all similar to each other, only distinguished
by slight and subtle differences. Therefore, an accurate system
usually requires strong annotations, e.g., bounding boxes for
object or even object parts. Such annotations are expensive
and unrealistic in many real applications. In answer to this
difficulty, there are attempts to categorize fine-grained images
with only image-level labels, e.g., [6], [7], [8], [9].

All authors are with the National Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing 210023, China. J. Wu is the cor-
responding author. E-mail: {weixs, luojh, wujx, zhouzh}@lamda.nju.edu.cn.

(a) Fine-grained image retrieval. Two examples (“Mallard” and “Rolls-
Royce Phantom Sedan 2012”) from the CUB200-2011 [10] and Cars [11]
datasets, respectively.

(b) General image retrieval. Two examples from the Oxford Building [12]
dataset.

Figure 1. Fine-grained image retrieval vs. general image retrieval. Fine
grained image retrieval (FGIR) processes visually similar objects as the probe
and gallery. For example, given an image of Mallard (or Rolls-Royce Phantom
Sedan 2012) as the query, the FGIR system should return images of the same
bird specie in various poses, scales and rotations (or images of the same
automobile type in various colors and angles). However, general-purpose
image retrieval focuses on searching similar images based on their similar
contents, e.g., textures and shapes of the same one building. In every row, the
first image is the query and the rest are retrieved images.

In this paper, we handle a more challenging but more
realistic task, i.e., Fine-Grained Image Retrieval (FGIR). In
FGIR, given database images of the same species (e.g., birds,
flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any
other supervision signal. FGIR is useful in applications such as
biological research and bio-diversity protection. As illustrated
in Fig. 1, FGIR is also different from general-purpose image
retrieval. General image retrieval focuses on retrieving near-
duplicate images based on similarities in their contents (e.g.,
textures, colors and shapes), while FGIR pays its attention on
retrieving the images of the same types (e.g., the same species
for the animals and the same model for the cars). Meanwhile,
objects in fine-grained images have only subtle differences,
and vary in poses, scales and rotations.

To meet these challenges, we propose the Selective Con-
volutional Descriptor Aggregation (SCDA) method, which
automatically localizes the main object in fine-grained images
and extracts discriminative representations for them. In SCDA,

http://www.weixiushen.com/
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以此类推……最终可得平均查询精度：

mAP = (AP1 + AP2 + AP3 + · · ·+ APn′)/n′ .

2 . 2 . 2 . 3 已有方法

第 2 . 2 . 1节介绍了细粒度级别图像识别的⼀些代表性⼯作。相⽐细粒度级

别图像识别，检索任务上的研究开展较晚，下⾯介绍该⽅⾯现有的⼀项⼯作。

Xie 等⼈ [83] 在 2015 年提出细粒度级别图像“搜索”的概念，通过构造⼀个层

次数据库将多种现有的细粒度级别图像数据集和传统图像检索数据集（⼀般为

场景图像数据集）融合，如图 2 11所⽰。在搜索时，先判断其⾪属的⼤类是传

统图像还是细粒度级别图像，之后再对其所属类别（如，花、鸟、狗等）进⾏

细粒度级别搜索。不过需指出两点：其⼀，该⽅法所⽤图像表⽰仍基于⼈造图

像特征（如 SIFT[49] 等）；其⼆，在实际使⽤诸如⽣态保护等应⽤问题中，对

细粒度级别图像的检索任务通常只在于某个物体类别内，例如仅会对不同鸟类

类别进⾏图像检索，通常并不会对鸟类、狗类等等多种类别物体的混合数据集

进⾏细粒度级别图像检索。相⽐之下，本⽂第 3章提出的检索⽅法是⾸个基于

深度学习的细粒度级别图像检索⽅法，同时，本⽂研究的细粒度级别图像检索

图 2 11: Xie 等⼈ [83] 提出的细粒度级别图像“搜索”任务⽰意图。（该插图由 IEEE 授权使
⽤。）[Xie et al., IEEE TMM 2015] http://www.weixiushen.com/
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Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

annotations are expensive and unrealistic in many real applications. In answer
to this di�culty, there are attempts to categorize fine-grained images with only
image-level labels, e.g., [6–9].

In this paper, we handle a more challenging but more realistic task, i.e., Fine-
Grained Image Retrieval (FGIR). In FGIR, given database images of the same
species (e.g., birds, flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any other supervision
signal. FGIR is useful in applications such as biological research and bio-diversity
protection. FGIR is also di↵erent from and di�cult than general-purpose image
retrieval. Objects in fine-grained images have only subtle di↵erences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Convolutional Descrip-
tor Aggregation (SCDA) method, which automatically localizes the main object
in fine-grained images and extracts discriminative representations for them. In
SCDA, only a pre-trained CNN model (from ImageNet which is not fine-grained)
is used and we use absolutely no supervision. As shown in Fig. 1, the pre-trained
CNN model first extracts convolution activations for an input image. We pro-
pose a novel approach to determine which part of the activations are useful (i.e.,
to localize the object). These useful descriptors are then aggregated and dimen-
sionality reduced to form a vector representation using practices we propose in
SCDA. Finally, a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on four popular fine-grained datasets,
i.e., CUB200-2011 [10], Stanford Dogs [11], Oxford Flowers 102 [12] and Oxford-

IIIT Pets [13] for image retrieval. In addition, we also report the classification
accuracy of the SCDA method, which only uses the image labels. Both retrieval
and classification experiments verify the e↵ectiveness of SCDA. The key advan-
tages and major contributions of our method are:
1. We propose a simple yet e↵ective approach to localize the main object. This

localization is unsupervised, without utilizing bounding boxes, image labels,
object proposals, or additional learning. SCDA selects only useful deep de-
scriptors and removes background or noise, which benefits the retrieval task.
For example, SCDA’s retrieval mAP on Oxford Flowers is 77.56%, signifi-
cantly higher than the baseline without descriptor selection (70.73%). With
the ensemble of multiple CNN layers and the proposed dimensionality re-

[Wei et al., IEEE TIP 2017]

Fine-grained image retrieval (con’t)

Selective Convolutional Descriptor Aggregation (SCDA)
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Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

annotations are expensive and unrealistic in many real applications. In answer
to this di�culty, there are attempts to categorize fine-grained images with only
image-level labels, e.g., [6–9].

In this paper, we handle a more challenging but more realistic task, i.e., Fine-
Grained Image Retrieval (FGIR). In FGIR, given database images of the same
species (e.g., birds, flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any other supervision
signal. FGIR is useful in applications such as biological research and bio-diversity
protection. FGIR is also di↵erent from and di�cult than general-purpose image
retrieval. Objects in fine-grained images have only subtle di↵erences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Convolutional Descrip-
tor Aggregation (SCDA) method, which automatically localizes the main object
in fine-grained images and extracts discriminative representations for them. In
SCDA, only a pre-trained CNN model (from ImageNet which is not fine-grained)
is used and we use absolutely no supervision. As shown in Fig. 1, the pre-trained
CNN model first extracts convolution activations for an input image. We pro-
pose a novel approach to determine which part of the activations are useful (i.e.,
to localize the object). These useful descriptors are then aggregated and dimen-
sionality reduced to form a vector representation using practices we propose in
SCDA. Finally, a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on four popular fine-grained datasets,
i.e., CUB200-2011 [10], Stanford Dogs [11], Oxford Flowers 102 [12] and Oxford-

IIIT Pets [13] for image retrieval. In addition, we also report the classification
accuracy of the SCDA method, which only uses the image labels. Both retrieval
and classification experiments verify the e↵ectiveness of SCDA. The key advan-
tages and major contributions of our method are:
1. We propose a simple yet e↵ective approach to localize the main object. This

localization is unsupervised, without utilizing bounding boxes, image labels,
object proposals, or additional learning. SCDA selects only useful deep de-
scriptors and removes background or noise, which benefits the retrieval task.
For example, SCDA’s retrieval mAP on Oxford Flowers is 77.56%, signifi-
cantly higher than the baseline without descriptor selection (70.73%). With
the ensemble of multiple CNN layers and the proposed dimensionality re-
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first

attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool5” refers to the activa-
tions of the max-pooled last convolution layer, and “fc8” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�
x(i,j)

 
,

where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool5 if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep

convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool5 activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first

attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool5” refers to the activa-
tions of the max-pooled last convolution layer, and “fc8” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�
x(i,j)

 
,

where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool5 if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep

convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool5 activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first

attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool5” refers to the activa-
tions of the max-pooled last convolution layer, and “fc8” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�
x(i,j)

 
,

where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool5 if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep

convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool5 activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first

attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool5” refers to the activa-
tions of the max-pooled last convolution layer, and “fc8” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�
x(i,j)

 
,

where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool5 if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep

convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool5 activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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The 468−th channel The 375−th channel The 284−th channelThe 108−th channel

The 481−th channel The 245−th channel The 6−th channel The 163−th channel

Figure 2. Sampled feature maps of four fine-grained images. Although we resize the
images for better visualization, our method can deal with images of any resolution.
(The figure is best viewed in color.)

datasets, CUB200-2011 [10] and Stanford Dogs [11]. We randomly sample sev-
eral feature maps from the 512 feature maps in pool5 and overlay them to original
images for better visualization. As can be seen from Fig. 2, the activated regions
of the sampled feature map (highlighted in warm color) may indicate semanti-
cally meaningful parts of birds or dogs, but can also indicate some background
or noisy parts in these fine-grained images.

In addition, the semantic meanings of the activated regions are quite di↵erent
even for the same channel. For example, in the 468th feature map for birds,
the activated region in the first image indicates the Artic tern’s claws and the
second does the hummingbird ’s head. In the 163th feature map for dogs, the first
indicates the toy terrier ’s mouth, while the second even has no activated region
for the Shetland sheepdog. More examples can be found in the supplementary
material. In addition, there are also some activated regions representing the
background, e.g., the 108th feature map for hummingbird and the 481th one
for Shetland sheepdog. Fig. 2 conveys that not all deep descriptors are useful,
and one single channel contains at best weak semantic information due to the
distributed nature of this representation. Therefore, selecting and using only
useful deep descriptors (and removing noise) is necessary. However, in order to
decide which deep descriptor is useful (i.e., containing the object we want to
retrieve), we cannot count on any single channel individually.

We propose a simple yet e↵ective method (shown in Fig. 4) whose quan-
titative and qualitative evaluation will be demonstrated in the next section.
Although one single channel is not very useful, if many channels fire at the same
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(a) Input image
(e) The largest connected
component of the mask map

(d) Mask map(c) Activation map(b) Feature maps

Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Therefore, we use fM to select useful and meaningful deep convolutional de-
scriptors. The descriptor x(i,j) should be kept when fMi,j = 1, while fMi,j = 0
means the position (i, j) might have background or noisy parts:

F =
n
x(i,j)|fMi,j = 1

o
, (2)

where F stands for the selected descriptor set, which will be aggregated into the
final representation for retrieving fine-grained images. The whole convolutional
descriptor selection process is illustrated in Fig. 4.

Qualitative Evaluation In this section, we give the qualitative evaluation of
the proposed descriptor selection process. Because the two fine-grained datasets
(i.e., CUB200-2011 and Stanford Dogs) supply the ground-truth bounding box
for each image, it is desirable to evaluate the proposed method for object local-
ization. However, as seen in Fig. 3, the detected regions are irregular shaped.
So, the minimum rectangle bounding boxes which contain the detected regions
are returned as our object localization predictions. We evaluate the proposed
method to localize the whole-object (birds or dogs) on their test sets. Example
predictions can be seen in Fig. 5. From these figures, the predicted bounding
boxes approximate the ground-truth ones, and even some results are better than
the ground truth. For instance, in the second dog image shown in Fig. 5, the
predicted bounding box can cover both dogs; and in the third one, the predicted
box contains less background, which is beneficial to retrieval performance. How-
ever, since we utilize no supervision, some details of the fine-grained objects, e.g.,
birds’ tails, cannot be contained accurately by the predicted bounding boxes.

Quantitative Evaluation In addition, we also report the results in terms of the
Percentage of Correctly Localized Parts (PCP) metric in Table 1. The reported
metrics are the percentage of whole-object boxes that are correctly localized
with a >50% IOU with the ground-truth bounding boxes. In this table, we also
show the PCP results of two fine-grained parts (i.e., head and torso) reported in
some previous part localization based fine-grained classification algorithms [4,
5,29]. Because our method do not require any supervision, we can just compare
the whole-object localization rates with that of fine-grained parts for a rough
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(a) Visualization of the mask map M

(b) Visualization of the mask map 

Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool5 activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1 Sn

(where Sn is the nth feature map in pool5). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(
1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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(a) Visualization of the mask map M

(b) Visualization of the mask map 

Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool5 activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1 Sn

(where Sn is the nth feature map in pool5). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(
1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool5 activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1 Sn

(where Sn is the nth feature map in pool5). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(
1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Therefore, we use fM to select useful and meaningful deep convolutional de-
scriptors. The descriptor x(i,j) should be kept when fMi,j = 1, while fMi,j = 0
means the position (i, j) might have background or noisy parts:

F =
n
x(i,j)|fMi,j = 1

o
, (2)

where F stands for the selected descriptor set, which will be aggregated into the
final representation for retrieving fine-grained images. The whole convolutional
descriptor selection process is illustrated in Fig. 4.

Qualitative Evaluation In this section, we give the qualitative evaluation of
the proposed descriptor selection process. Because the two fine-grained datasets
(i.e., CUB200-2011 and Stanford Dogs) supply the ground-truth bounding box
for each image, it is desirable to evaluate the proposed method for object local-
ization. However, as seen in Fig. 3, the detected regions are irregular shaped.
So, the minimum rectangle bounding boxes which contain the detected regions
are returned as our object localization predictions. We evaluate the proposed
method to localize the whole-object (birds or dogs) on their test sets. Example
predictions can be seen in Fig. 5. From these figures, the predicted bounding
boxes approximate the ground-truth ones, and even some results are better than
the ground truth. For instance, in the second dog image shown in Fig. 5, the
predicted bounding box can cover both dogs; and in the third one, the predicted
box contains less background, which is beneficial to retrieval performance. How-
ever, since we utilize no supervision, some details of the fine-grained objects, e.g.,
birds’ tails, cannot be contained accurately by the predicted bounding boxes.

Quantitative Evaluation In addition, we also report the results in terms of the
Percentage of Correctly Localized Parts (PCP) metric in Table 1. The reported
metrics are the percentage of whole-object boxes that are correctly localized
with a >50% IOU with the ground-truth bounding boxes. In this table, we also
show the PCP results of two fine-grained parts (i.e., head and torso) reported in
some previous part localization based fine-grained classification algorithms [4,
5,29]. Because our method do not require any supervision, we can just compare
the whole-object localization rates with that of fine-grained parts for a rough
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Figure 6. Samples of predicted object localization bounding box on CUB200-2011 and

Stanford Dogs. The ground-truth bounding box is marked as the red dashed rectangle,

while the predicted one is marked in the solid yellow one. (Best viewed in color.)
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Figure 6. Samples of predicted object localization bounding box on CUB200-2011 and

Stanford Dogs. The ground-truth bounding box is marked as the red dashed rectangle,

while the predicted one is marked in the solid yellow one. (Best viewed in color.)
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs

top1 top5 top1 top5
VLAD 1,024 55.92% 62.51% 69.28% 74.43%

Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%
avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `2-normalization are followed; for max- and average-
pooling methods, we just do `2-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu5 2 layer
which is three layers in front of pool5 in the VGG-16 model [25].

Following pool5, we get the mask mapMrelu5 2 from relu5 2. Its activations are
less related to the semantic meaning than those of pool5. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool5. Therefore, we combine fMpool5 and Mrelu5 2 together to get the final mask

map of relu5 2. fMpool5 is firstly upsampled to the size of Mrelu5 2 . We keep the

descriptors when their position in both fMpool5 and Mrelu5 2 are 1, which are
the final selected relu5 2 descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu5 2 and pool5 into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥
SCDApool5 , ↵⇥ SCDArelu5 2

⇤
, (3)
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Figure 5. Samples of predicted object localization bounding box. The ground-truth
bounding box is marked as the red dashed rectangle, while the predicted one is marked
in the solid yellow rectangle. (The figure is best viewed in color.)

Table 1. Comparison of object localization performance on two fine-grained datasets.

Dataset Method
Train phase Test phase

Head Torso Whole-object
BBox Parts BBox Parts

CUB200-2011

Strong DPM [29] X X X 43.49% 75.15% N/A
Part-based R-CNN with BBox [4] X X X 68.19% 79.82% N/A

Deep LAC [5] X X X 74.00% 96.00% N/A
Part-based R-CNN [4] X X 61.42% 70.68% N/A

Ours N/A N/A 76.79%

Stanford Dogs Ours N/A N/A 78.86%

comparison. In fact, the torso bounding box is highly similar to that of the
whole-object in CUB200-2011. By comparing the results of PCP for torso and
our whole-object, we find that, even though our method is unsupervised, the
localization performance is just slightly lower or even comparable to that of
these algorithms using strong supervisions, e.g., ground-truth bounding box and
parts annotations (even in the test phase).

3.2 Aggregating Convolutional Descriptors

After selecting F =
n
x(i,j)|fMi,j = 1

o
, we compare several encoding or pooling

approaches to aggregate these convolutional features, and then give our proposal.

– VLAD [14] uses k-means to find a codebook of K centroids {c1, . . . , cK}
and maps x(i,j) into a single vector v(i,j) =

⇥
0 . . . 0 x(i,j) � ck . . . 0

⇤
2

RK⇥d, where ck is the closest centroid to x(i,j). The final representation isP
i,j v(i,j).

– Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment
(i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also
includes second-order statistics.2

2 For parameter choice of VLAD/FV, we follow the suggestions reported in [30]. The
number of clusters in VLAD and the number of Gaussian components in FV are
both set to 2. Larger values lead to lower accuracy.
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Figure 5. Samples of predicted object localization bounding box. The ground-truth
bounding box is marked as the red dashed rectangle, while the predicted one is marked
in the solid yellow rectangle. (The figure is best viewed in color.)

Table 1. Comparison of object localization performance on two fine-grained datasets.

Dataset Method
Train phase Test phase

Head Torso Whole-object
BBox Parts BBox Parts

CUB200-2011

Strong DPM [29] X X X 43.49% 75.15% N/A
Part-based R-CNN with BBox [4] X X X 68.19% 79.82% N/A

Deep LAC [5] X X X 74.00% 96.00% N/A
Part-based R-CNN [4] X X 61.42% 70.68% N/A

Ours N/A N/A 76.79%

Stanford Dogs Ours N/A N/A 78.86%

comparison. In fact, the torso bounding box is highly similar to that of the
whole-object in CUB200-2011. By comparing the results of PCP for torso and
our whole-object, we find that, even though our method is unsupervised, the
localization performance is just slightly lower or even comparable to that of
these algorithms using strong supervisions, e.g., ground-truth bounding box and
parts annotations (even in the test phase).

3.2 Aggregating Convolutional Descriptors

After selecting F =
n
x(i,j)|fMi,j = 1

o
, we compare several encoding or pooling

approaches to aggregate these convolutional features, and then give our proposal.

– VLAD [14] uses k-means to find a codebook of K centroids {c1, . . . , cK}
and maps x(i,j) into a single vector v(i,j) =

⇥
0 . . . 0 x(i,j) � ck . . . 0

⇤
2

RK⇥d, where ck is the closest centroid to x(i,j). The final representation isP
i,j v(i,j).

– Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment
(i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also
includes second-order statistics.2

2 For parameter choice of VLAD/FV, we follow the suggestions reported in [30]. The
number of clusters in VLAD and the number of Gaussian components in FV are
both set to 2. Larger values lead to lower accuracy.
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs

top1 top5 top1 top5
VLAD 1,024 55.92% 62.51% 69.28% 74.43%

Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%
avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `2-normalization are followed; for max- and average-
pooling methods, we just do `2-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu5 2 layer
which is three layers in front of pool5 in the VGG-16 model [25].

Following pool5, we get the mask mapMrelu5 2 from relu5 2. Its activations are
less related to the semantic meaning than those of pool5. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool5. Therefore, we combine fMpool5 and Mrelu5 2 together to get the final mask

map of relu5 2. fMpool5 is firstly upsampled to the size of Mrelu5 2 . We keep the

descriptors when their position in both fMpool5 and Mrelu5 2 are 1, which are
the final selected relu5 2 descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu5 2 and pool5 into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥
SCDApool5 , ↵⇥ SCDArelu5 2

⇤
, (3)

SCDA
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(a) M of Pool5 (d)       of Relu5_2(c) M of Relu5_2(b)       of Pool5

Figure 6. The mask map and its corresponding largest connected component of dif-
ferent CNN layers. (The figure is best viewed in color.)

where ↵ is the coe�cient for SCDArelu5 2 . It is set to 0.5 for FGIR. The `2

normalization is followed. In addition, another SCDA+ of the horizontal flip of
the original image is incorporated, which is denoted as “SCDA flip+” (4,096-d).

4 Experiments and Results

In this section, we report the fine-grained image retrieval results. In addition,
as another evidence to prove the e↵ectiveness of SCDA, we also report the
fine-grained classification accuracy by fine-tuning the pre-trained model with
image-level labels. In the experiments, we evaluate the proposed method on four
benchmark fine-grained datasets, CUB200-2011 [10] (200 classes, 11,788 im-
ages), Stanford Dogs [11] (120 classes, 20,580 images), Oxford Flowers 102 [12]
(102 classes, 8,189 images) and Oxford-IIIT Pets [13] (37 classes, 7,349 images).
For the pre-trained deep model, the publicly available VGG-16 model [25] is
employed to extract deep convolutional descriptors in MatConvNet [33].

4.1 Fine-Grained Image Retrieval Performance

We compare the proposed method with several baseline approaches and two
state-of-the-art general image retrieval approaches, SPoC [20] and CroW [21].
The top-1 and top-5 mAP results are reported in Table 3.

For the fc8 baseline, because it requires the input images at a fixed size, the
original images are resized to 224⇥224 and then fed into VGG-16. In addition, we
also feed the ground truth bounding boxes to replace the whole images. As shown
in Table 3, because the ground truth bounding boxes of these fine-grained images
just contain the main objects, the fc8 feature of the ground truth bounding
box achieves better performance than that of the whole images. Moreover, the
retrieval results of the fc8 feature using the bounding boxes predicted by our
method are also shown in Table 3, which are slightly lower than the ground-
truth ones. This observation validates the e↵ectiveness of our method’s object
localization once again.

For the pool5 baseline, the pool5 descriptors are extracted directly with-
out any selection process. We pool them by both average- and max-pooling, and
concatenate them into a 1,024-d representation. As shown in Table 3, the perfor-
mance of pool5 is better than “fc8 im”, but much worse than the proposed SCDA
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs

top1 top5 top1 top5
VLAD 1,024 55.92% 62.51% 69.28% 74.43%

Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%
avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `2-normalization are followed; for max- and average-
pooling methods, we just do `2-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu5 2 layer
which is three layers in front of pool5 in the VGG-16 model [25].

Following pool5, we get the mask mapMrelu5 2 from relu5 2. Its activations are
less related to the semantic meaning than those of pool5. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool5. Therefore, we combine fMpool5 and Mrelu5 2 together to get the final mask

map of relu5 2. fMpool5 is firstly upsampled to the size of Mrelu5 2 . We keep the

descriptors when their position in both fMpool5 and Mrelu5 2 are 1, which are
the final selected relu5 2 descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu5 2 and pool5 into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥
SCDApool5 , ↵⇥ SCDArelu5 2

⇤
, (3)
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(a) M of Pool5 (d)       of Relu5_2(c) M of Relu5_2(b)       of Pool5

Figure 6. The mask map and its corresponding largest connected component of dif-
ferent CNN layers. (The figure is best viewed in color.)

where ↵ is the coe�cient for SCDArelu5 2 . It is set to 0.5 for FGIR. The `2

normalization is followed. In addition, another SCDA+ of the horizontal flip of
the original image is incorporated, which is denoted as “SCDA flip+” (4,096-d).

4 Experiments and Results

In this section, we report the fine-grained image retrieval results. In addition,
as another evidence to prove the e↵ectiveness of SCDA, we also report the
fine-grained classification accuracy by fine-tuning the pre-trained model with
image-level labels. In the experiments, we evaluate the proposed method on four
benchmark fine-grained datasets, CUB200-2011 [10] (200 classes, 11,788 im-
ages), Stanford Dogs [11] (120 classes, 20,580 images), Oxford Flowers 102 [12]
(102 classes, 8,189 images) and Oxford-IIIT Pets [13] (37 classes, 7,349 images).
For the pre-trained deep model, the publicly available VGG-16 model [25] is
employed to extract deep convolutional descriptors in MatConvNet [33].

4.1 Fine-Grained Image Retrieval Performance

We compare the proposed method with several baseline approaches and two
state-of-the-art general image retrieval approaches, SPoC [20] and CroW [21].
The top-1 and top-5 mAP results are reported in Table 3.

For the fc8 baseline, because it requires the input images at a fixed size, the
original images are resized to 224⇥224 and then fed into VGG-16. In addition, we
also feed the ground truth bounding boxes to replace the whole images. As shown
in Table 3, because the ground truth bounding boxes of these fine-grained images
just contain the main objects, the fc8 feature of the ground truth bounding
box achieves better performance than that of the whole images. Moreover, the
retrieval results of the fc8 feature using the bounding boxes predicted by our
method are also shown in Table 3, which are slightly lower than the ground-
truth ones. This observation validates the e↵ectiveness of our method’s object
localization once again.

For the pool5 baseline, the pool5 descriptors are extracted directly with-
out any selection process. We pool them by both average- and max-pooling, and
concatenate them into a 1,024-d representation. As shown in Table 3, the perfor-
mance of pool5 is better than “fc8 im”, but much worse than the proposed SCDA
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Figure 7. Some retrieval results of four fine-grained datasets. On the left, there are
two successful cases for each datasets; while on the right, there are failure cases. The
first image in each row is the query image. Wrong retrieval results are marked by red
boxes. (Best viewed in color.)

and Oxford Flowers. Moreover, “256-d SVD+whitening” generally achieves bet-
ter performance than other compressed ones, meanwhile with less dimensions.
Therefore, we take it as our optimal choice for FGIR. In the following, we present
some retrieval examples based on “256-d SVD+whitening”.

In Fig. 7, we show two successful retrieval results and two failure cases for
each fine-grained dataset, respectively. As shown in the successful cases, our
method can work well when the same kind of birds, animals or flowers appear
in di↵erent kinds of background. In addition, for these failure cases, there exist
only tiny di↵erences between the query image and the returned ones, which can
not be accurately detected in this pure unsupervised setting. We can also find
some interesting observations, e.g., the last failure case of the flowers and pets.
For the flowers, there are two correct predictions in the top-5 returned images.
Even though the flowers in the correct predictions have di↵erent colors with the
query, our method can still find them. For the pets’ failure cases, the dogs in the
returned images have the same pose as the query image.

4.2 Quality and Insight of the SCDA Feature

In this section, we discuss the quality of the proposed SCDA feature. After
SVD and whitening, the former distributed dimensions of SCDA have more
discriminative ability, i.e., directly correspond to semantic visual properties that
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Figure 8. Quality demonstrations of the SCDA feature. From the top to bottom of
each column, there are six returned original images in the order of one sorted dimension
of “256-d SVD+whitening”. (Best viewed in color and zoomed in.)

are useful for retrieval. We use three datasets (CUB200-2011, Stanford Dogs

and Oxford Flowers) as examples to illustrate the quality. We first select one
dimension of “256-d SVD+whitening”, and then sort the value of that dimension
in the descending order. Then, we visualize images in the same order, which is
shown in Fig. 8.

Images of each column have some similar “attributes”, e.g., living in water

and opening wings for birds; brown and white heads and similar looking faces for
dogs; similar shaped inflorescence and petals with tiny spots for flowers. Obvi-
ously, the SCDA feature has the ability to describe the main objects’ attributes
(even subtle ones), which might explain its success in fine-grained image retrieval.
Details and more examples can be found in the supplementary material.

4.3 Classification Results

In the end, we compare with several state-of-the-art fine-grained classification

algorithms to validate the e↵ectiveness of SCDA from the classification perspec-
tive. In the classification experiments, we fine-tune the pre-trained VGG-16 with
only the image-level labels, and add the horizontal flips of the original images as
data augmentation when fine-tuning. After obtaining the fine-tuned model, we
extract the SCDA flip+ as the whole image representations and feed them into
a linear SVM to train a classifier. Note that, the coe�cient ↵ in classification
experiments is set to 1 to let the classifier to learn and then select important
dimensions automatically. The classification accuracy comparison is listed in Ta-
ble 5.

The classification accuracy of our method is comparable or even better than
the algorithms trained with strong supervised annotations, e.g., [4,5]. For these
algorithms using only image-level labels, our classification accuracy is compara-
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Image co-localization (a.k.a. unsupervised object discovery) is a
fundamental computer vision problem, which simultaneously localizes
objects of the same category across a set of distinct images.
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ü We propose a simple yet effective method, i.e., Deep Descriptor 
Transforming, for image co-localization. DDT does not require image 
labels, negative images or redundant object proposals.

ü To our knowledge, this is the first work to demonstrate the possibility 
of convolutional activations/descriptors in pre-trained models being 
able to act as a detector for the common object, which also reveals 
another probability of deep pre-trained network reusing.

ü For the co-localization performance, DDT consistently outperforms
state-of-the-arts of image co-localization methods by a large margin 
and also weakly supervised object localization methods.

ü DDT has a good generalization ability for unseen categories and 
robustness for dealing with noisy data. 
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Input images

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:

P
1 =

2

6664

p
1
(1,1) p

1
(1,2) . . . p

1
(1,w)

p
1
(2,1) p

1
(2,2) . . . p

1
(2,w)

...
...

. . .
...

p
1
(h,1) p

1
(h,2) . . . p

1
(h,w)

3

7775
. (4)

P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
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1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
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components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.
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tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained
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correlation will be. Because ⇠1 is obtained through all N
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characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.
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old for dividing P
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positive values indicating the common object, and the other
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indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
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same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.
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In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
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Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
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positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
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and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P
1 can be also used as localiza-

tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments

In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets

Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp\Bgt)

area(Bp[Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5
[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts

Comparisons to Image Co-Localization Methods

We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization

Methods

To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350⇥ 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet

In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images

In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P

1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P

1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.
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[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
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Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

ROC curves of our DDT 
(the red line) at 

identifying noisy images 
on Object Discovery. 

From P1 to P2

-- Part based co-localization

ü DDT revealed another reusability of deep pre-trained networks.
ü It offered further understanding and insights about CNNs.
ü Our proposed DDT method is both efficient and effective.
ü The generalization ability and robustness of DDT ensure its 

effectiveness and powerful reusability in real-world applications. 

6 – Conclusions

DDT results

best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work

2.1 CNN Model Reuse

Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization

Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method

3.1 Preliminary

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ⇥W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h⇥w⇥d elements. T can be considered as having h⇥w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as X

n =
n
xn
(i,j) 2 Rd

o
, where (i, j) is a particular cell

(i 2 {1, . . . , h} , j 2 {1, . . . , w}) and n 2 {1, . . . , N}.

3.2 SCDA Recap

Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h⇥ w ⇥ d 3-D tensor
becomes a h⇥w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.

Fine-grained image retrieval (con’t)

[Wei et al., IJCAI 2017] http://www.weixiushen.com/

http://www.weixiushen.com/
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Input images

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:

P
1 =

2

6664

p
1
(1,1) p

1
(1,2) . . . p

1
(1,w)

p
1
(2,1) p

1
(2,2) . . . p

1
(2,w)

...
...

. . .
...

p
1
(h,1) p

1
(h,2) . . . p

1
(h,w)

3

7775
. (4)

P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1
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i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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correlation will be. Because ⇠1 is obtained through all N
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As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
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beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.
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1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
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Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
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characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
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same as that of the input image. Meanwhile, we collect the
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bounding box which contains the largest connected component
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and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 1: Pipeline of the proposed DDT method for image
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adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the

Indicator matrix for
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Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
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fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P
1 can be also used as localiza-

tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments

In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets

Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp\Bgt)

area(Bp[Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5
[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts

Comparisons to Image Co-Localization Methods

We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization

Methods

To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350⇥ 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet

In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images

In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P

1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P

1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.
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Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.
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successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
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Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

ROC curves of our DDT 
(the red line) at 

identifying noisy images 
on Object Discovery. 

From P1 to P2

-- Part based co-localization

ü DDT revealed another reusability of deep pre-trained networks.
ü It offered further understanding and insights about CNNs.
ü Our proposed DDT method is both efficient and effective.
ü The generalization ability and robustness of DDT ensure its 

effectiveness and powerful reusability in real-world applications. 

6 – Conclusions

DDT results

best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work

2.1 CNN Model Reuse

Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization

Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method

3.1 Preliminary

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ⇥W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h⇥w⇥d elements. T can be considered as having h⇥w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as X

n =
n
xn
(i,j) 2 Rd

o
, where (i, j) is a particular cell

(i 2 {1, . . . , h} , j 2 {1, . . . , w}) and n 2 {1, . . . , N}.

3.2 SCDA Recap

Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h⇥ w ⇥ d 3-D tensor
becomes a h⇥w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.
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Image co-localization (a.k.a. unsupervised object discovery) is a
fundamental computer vision problem, which simultaneously localizes
objects of the same category across a set of distinct images.
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ü We propose a simple yet effective method, i.e., Deep Descriptor 
Transforming, for image co-localization. DDT does not require image 
labels, negative images or redundant object proposals.

ü To our knowledge, this is the first work to demonstrate the possibility 
of convolutional activations/descriptors in pre-trained models being 
able to act as a detector for the common object, which also reveals 
another probability of deep pre-trained network reusing.

ü For the co-localization performance, DDT consistently outperforms
state-of-the-arts of image co-localization methods by a large margin 
and also weakly supervised object localization methods.

ü DDT has a good generalization ability for unseen categories and 
robustness for dealing with noisy data. 
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Input images

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
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vision for dimension reduction [Chen et al., 2013; Gu et
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for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
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and his participation was supported by China Scholarship Council. J.
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CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P
1 can be also used as localiza-

tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments

In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets

Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp\Bgt)

area(Bp[Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5
[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts

Comparisons to Image Co-Localization Methods

We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization

Methods

To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350⇥ 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet

In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images

In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P

1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P

1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
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[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.
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“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.
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Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

ROC curves of our DDT 
(the red line) at 

identifying noisy images 
on Object Discovery. 

From P1 to P2

-- Part based co-localization

ü DDT revealed another reusability of deep pre-trained networks.
ü It offered further understanding and insights about CNNs.
ü Our proposed DDT method is both efficient and effective.
ü The generalization ability and robustness of DDT ensure its 

effectiveness and powerful reusability in real-world applications. 

6 – Conclusions

DDT results

best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work

2.1 CNN Model Reuse

Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization

Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method

3.1 Preliminary

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ⇥W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h⇥w⇥d elements. T can be considered as having h⇥w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as X

n =
n
xn
(i,j) 2 Rd

o
, where (i, j) is a particular cell

(i 2 {1, . . . , h} , j 2 {1, . . . , w}) and n 2 {1, . . . , N}.

3.2 SCDA Recap

Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h⇥ w ⇥ d 3-D tensor
becomes a h⇥w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.
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ü We propose a simple yet effective method, i.e., Deep Descriptor 
Transforming, for image co-localization. DDT does not require image 
labels, negative images or redundant object proposals.

ü To our knowledge, this is the first work to demonstrate the possibility 
of convolutional activations/descriptors in pre-trained models being 
able to act as a detector for the common object, which also reveals 
another probability of deep pre-trained network reusing.

ü For the co-localization performance, DDT consistently outperforms
state-of-the-arts of image co-localization methods by a large margin 
and also weakly supervised object localization methods.

ü DDT has a good generalization ability for unseen categories and 
robustness for dealing with noisy data. 
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Input images

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:

P
1 =

2

6664

p
1
(1,1) p

1
(1,2) . . . p

1
(1,w)

p
1
(2,1) p

1
(2,2) . . . p

1
(2,w)

...
...

. . .
...

p
1
(h,1) p

1
(h,2) . . . p

1
(h,w)

3

7775
. (4)

P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.
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be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
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vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:

P
1 =

2

6664

p
1
(1,1) p

1
(1,2) . . . p

1
(1,w)

p
1
(2,1) p

1
(2,2) . . . p

1
(2,w)

...
...

. . .
...

p
1
(h,1) p

1
(h,2) . . . p

1
(h,w)

3

7775
. (4)

P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P
1 can be also used as localiza-

tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments

In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets

Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp\Bgt)

area(Bp[Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5
[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts

Comparisons to Image Co-Localization Methods

We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization

Methods

To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350⇥ 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet

In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images

In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P

1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P

1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.
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2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.
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Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.
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ü DDT revealed another reusability of deep pre-trained networks.
ü It offered further understanding and insights about CNNs.
ü Our proposed DDT method is both efficient and effective.
ü The generalization ability and robustness of DDT ensure its 

effectiveness and powerful reusability in real-world applications. 

6 – Conclusions

DDT results

best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work

2.1 CNN Model Reuse

Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization

Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method

3.1 Preliminary

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ⇥W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h⇥w⇥d elements. T can be considered as having h⇥w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as X

n =
n
xn
(i,j) 2 Rd

o
, where (i, j) is a particular cell

(i 2 {1, . . . , h} , j 2 {1, . . . , w}) and n 2 {1, . . . , N}.

3.2 SCDA Recap

Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h⇥ w ⇥ d 3-D tensor
becomes a h⇥w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.

Fine-grained image retrieval (con’t)

[Wei et al., IJCAI 2017] http://www.weixiushen.com/

http://www.weixiushen.com/
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Image co-localization (a.k.a. unsupervised object discovery) is a
fundamental computer vision problem, which simultaneously localizes
objects of the same category across a set of distinct images.
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ü We propose a simple yet effective method, i.e., Deep Descriptor 
Transforming, for image co-localization. DDT does not require image 
labels, negative images or redundant object proposals.

ü To our knowledge, this is the first work to demonstrate the possibility 
of convolutional activations/descriptors in pre-trained models being 
able to act as a detector for the common object, which also reveals 
another probability of deep pre-trained network reusing.

ü For the co-localization performance, DDT consistently outperforms
state-of-the-arts of image co-localization methods by a large margin 
and also weakly supervised object localization methods.

ü DDT has a good generalization ability for unseen categories and 
robustness for dealing with noisy data. 
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Input images

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1
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X
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X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1
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. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
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use is only from the pre-trained models. Here, we transform
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larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
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and his participation was supported by China Scholarship Council. J.
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CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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deep convolutional models. Specifically, different
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layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P
1 can be also used as localiza-

tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments

In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets

Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp\Bgt)

area(Bp[Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5
[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts

Comparisons to Image Co-Localization Methods

We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization

Methods

To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350⇥ 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet

In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images

In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P

1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P

1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
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[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

ROC curves of our DDT 
(the red line) at 

identifying noisy images 
on Object Discovery. 

From P1 to P2

-- Part based co-localization

ü DDT revealed another reusability of deep pre-trained networks.
ü It offered further understanding and insights about CNNs.
ü Our proposed DDT method is both efficient and effective.
ü The generalization ability and robustness of DDT ensure its 

effectiveness and powerful reusability in real-world applications. 

6 – Conclusions

DDT results

best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work

2.1 CNN Model Reuse

Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization

Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method

3.1 Preliminary

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ⇥W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h⇥w⇥d elements. T can be considered as having h⇥w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as X

n =
n
xn
(i,j) 2 Rd

o
, where (i, j) is a particular cell

(i 2 {1, . . . , h} , j 2 {1, . . . , w}) and n 2 {1, . . . , N}.

3.2 SCDA Recap

Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h⇥ w ⇥ d 3-D tensor
becomes a h⇥w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.

Use the first eigenvector by PCA as the projection direction
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Image co-localization (a.k.a. unsupervised object discovery) is a
fundamental computer vision problem, which simultaneously localizes
objects of the same category across a set of distinct images.
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ü We propose a simple yet effective method, i.e., Deep Descriptor 
Transforming, for image co-localization. DDT does not require image 
labels, negative images or redundant object proposals.

ü To our knowledge, this is the first work to demonstrate the possibility 
of convolutional activations/descriptors in pre-trained models being 
able to act as a detector for the common object, which also reveals 
another probability of deep pre-trained network reusing.

ü For the co-localization performance, DDT consistently outperforms
state-of-the-arts of image co-localization methods by a large margin 
and also weakly supervised object localization methods.

ü DDT has a good generalization ability for unseen categories and 
robustness for dealing with noisy data. 
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Input images

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:

P
1 =

2

6664

p
1
(1,1) p

1
(1,2) . . . p

1
(1,w)

p
1
(2,1) p

1
(2,2) . . . p

1
(2,w)

...
...

. . .
...

p
1
(h,1) p

1
(h,2) . . . p

1
(h,w)

3

7775
. (4)

P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

3.3 Deep Descriptor Transforming (DDT)

What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:
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where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:
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we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:
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According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:
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P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

Transforming

Deep Descriptor Transforming for Image Co-Localization
⇤

Xiu-Shen Wei
1
, Chen-Lin Zhang

1
, Yao Li

2
, Chen-Wei Xie

1
,

Jianxin Wu
1
, Chunhua Shen

2
, Zhi-Hua Zhou

1

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2The University of Adelaide, Adelaide, Australia

{weixs,zhangcl,xiecw,wujx,zhouzh}@lamda.nju.edu.cn, {yao.li01,chunhua.shen}@adelaide.edu.au

Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
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relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1

, . . . , X
N ) by feeding them into a pre-trained

CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

X

n

X

i,j

xn
(i,j) , (1)

where K = h ⇥ w ⇥ N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h⇥ w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

X

n

X

i,j

(xn
(i,j) � x̄)(xn

(i,j) � x̄)> , (2)

we can get the eigenvectors ⇠1, . . . , ⇠d of Cov(x) which cor-
respond to the sorted eigenvalues �1 � · · · � �d � 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ⇠1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p
1
(i,j) = ⇠>1

�
x(i,j) � x̄

�
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h⇥ w.

We call that matrix as indicator matrix:

P
1 =

2

6664

p
1
(1,1) p

1
(1,2) . . . p

1
(1,w)

p
1
(2,1) p

1
(2,2) . . . p

1
(2,w)

...
...

. . .
...

p
1
(h,1) p

1
(h,2) . . . p

1
(h,w)

3

7775
. (4)

P
1 contains positive (negative) values which can reflect the

positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ⇠1 is obtained through all N
images, the positive correlation could indicate the common
characteristic through N images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P

1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses

In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P

1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P

1 into the [�1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to �1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the

Indicator matrix for
co-localization

Deep Descriptor Transforming for Image Co-Localization
⇤

Xiu-Shen Wei
1
, Chen-Lin Zhang

1
, Yao Li

2
, Chen-Wei Xie

1
,

Jianxin Wu
1
, Chunhua Shen

2
, Zhi-Hua Zhou

1

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2The University of Adelaide, Adelaide, Australia

{weixs,zhangcl,xiecw,wujx,zhouzh}@lamda.nju.edu.cn, {yao.li01,chunhua.shen}@adelaide.edu.au

Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
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Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P
1 can be also used as localiza-

tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments

In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets

Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp\Bgt)

area(Bp[Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5
[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts

Comparisons to Image Co-Localization Methods

We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization

Methods

To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350⇥ 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet

In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images

In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P

1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P

1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.
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Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study

In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P

2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P

2. Through these figures, it is apparently to find P
1 can

locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,
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Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P

2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions

Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.

ROC curves of our DDT 
(the red line) at 

identifying noisy images 
on Object Discovery. 

From P1 to P2

-- Part based co-localization

ü DDT revealed another reusability of deep pre-trained networks.
ü It offered further understanding and insights about CNNs.
ü Our proposed DDT method is both efficient and effective.
ü The generalization ability and robustness of DDT ensure its 

effectiveness and powerful reusability in real-world applications. 

6 – Conclusions

DDT results

best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work

2.1 CNN Model Reuse

Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization

Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method

3.1 Preliminary

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ⇥W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h⇥w⇥d elements. T can be considered as having h⇥w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as X

n =
n
xn
(i,j) 2 Rd

o
, where (i, j) is a particular cell

(i 2 {1, . . . , h} , j 2 {1, . . . , w}) and n 2 {1, . . . , N}.

3.2 SCDA Recap

Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h⇥ w ⇥ d 3-D tensor
becomes a h⇥w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.

Fine-grained image retrieval (con’t)

[Wei et al., IJCAI 2017] http://www.weixiushen.com/
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Abstract

Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction

Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully

⇤The first two authors contributed equally to this work. This
research was supported by NSFC (61422203, 61333014) and 973
Program (2014CB340501). C. Shen’s participation was in part sup-
ported by ARC Future Fellowship (FT120100969). X.-S. Wei’s
contribution was made when visiting The University of Adelaide,
and his participation was supported by China Scholarship Council. J.
Wu is the corresponding author.

CNN pre-trained models

Deep Descriptor Transforming

Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our

The whole pipeline of DDT

Fine-grained image retrieval (con’t)

[Wei et al., IJCAI 2017] http://www.weixiushen.com/
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Figure 2: Examples of twenty categories from the PASCAL VOC 2007 dataset (Everingham et al, 2015). The first
column of each sub-figure is produced by SCDA, the second column is by our DDT. The red vertical lines in the
histogram plots indicate the corresponding thresholds for localizing objects. The selected regions in images are
highlighted in red. (Best viewed in color and zoomed in.)

convolutional layer by our DDT. Several visualization
examples of P̂ 1

c are shown in the first column of Fig. 3.
In DDT+, beyond that, those deep descriptors from
the previous convolutional layer before the last one
are also used for generating its corresponding resized
P

1, which is notated as P
1
prev. For P

1
prev, we directly

transform it into a binary map P̂
1
prev. In the middle

column of Fig. 3, the red highlighted regions represent
the co-localization results by P̂

1
prev. Since the activations

from the previous convolutional layer are less related
to the high-level semantic meaning than those from the
last convolutional layer, other objects not belonging to
the common object category are also being detected.
However, the localization boundaries are much finer
than P̂

1
c . Therefore, we combine P̂

1
c and P̂

1
prev together

to obtain the final co-localization prediction as follows:

P̂
1
c \ P̂

1
prev . (5)

As shown in the last column of Fig. 3, the co-localization
visualization results of DDT+ are better than the re-
sults of DDT, especially for the bottle class. In addition,
from the quantitative perspective, DDT+ will bring on
average 1.5% improvements on image co-localization (cf.
Table 2, Table 3 and Table 5).

4 Experiments

In this section, we first introduce the evaluation metric
and datasets used in image co-localization. Then, we
compare the empirical results of our DDT and DDT+

with other state-of-the-arts on these datasets. The com-
putational cost is reported too. Moreover, the results in
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Figure 2: Examples of twenty categories from the PASCAL VOC 2007 dataset (Everingham et al, 2015). The first
column of each sub-figure is produced by SCDA, the second column is by our DDT. The red vertical lines in the
histogram plots indicate the corresponding thresholds for localizing objects. The selected regions in images are
highlighted in red. (Best viewed in color and zoomed in.)

convolutional layer by our DDT. Several visualization
examples of P̂ 1

c are shown in the first column of Fig. 3.
In DDT+, beyond that, those deep descriptors from
the previous convolutional layer before the last one
are also used for generating its corresponding resized
P

1, which is notated as P
1
prev. For P

1
prev, we directly

transform it into a binary map P̂
1
prev. In the middle

column of Fig. 3, the red highlighted regions represent
the co-localization results by P̂

1
prev. Since the activations

from the previous convolutional layer are less related
to the high-level semantic meaning than those from the
last convolutional layer, other objects not belonging to
the common object category are also being detected.
However, the localization boundaries are much finer
than P̂

1
c . Therefore, we combine P̂

1
c and P̂

1
prev together

to obtain the final co-localization prediction as follows:

P̂
1
c \ P̂

1
prev . (5)

As shown in the last column of Fig. 3, the co-localization
visualization results of DDT+ are better than the re-
sults of DDT, especially for the bottle class. In addition,
from the quantitative perspective, DDT+ will bring on
average 1.5% improvements on image co-localization (cf.
Table 2, Table 3 and Table 5).

4 Experiments

In this section, we first introduce the evaluation metric
and datasets used in image co-localization. Then, we
compare the empirical results of our DDT and DDT+

with other state-of-the-arts on these datasets. The com-
putational cost is reported too. Moreover, the results in
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(a) Chipmunk (b) Rhino

(c) Stoat (d) Racoon

(e) Rake (f) Wheelchair

Figure 4: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each sub-figure
contains three successful predictions and one failure case. In these images, the red rectangle is the prediction by
DDT, and the yellow dashed rectangle is the ground truth bounding box. In the successful predictions, the yellow
rectangles are omitted since they are exactly the same as the red predictions. (Best viewed in color and zoomed in.)
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Figure 5: ROC curves illustrating the e↵ectiveness of
our DDT at identifying noisy images on the Object
Discovery dataset. The curves in red line are the ROC
curves of DDT. The curves in blue dashed line present
the method in Tang et al (2014).

CorLoc metric without noise is about 12% higher than
theirs on Object Discovery, cf. Table 1.

4.6 DDT Augmentation based on Web Images

As validated by previous experiments, DDT can accu-
rately detect noisy images and meanwhile supply object
bounding boxes of images (except for noisy images).
Therefore, we can use DDT to process web images. In
this section, we report the results of both image classifi-
cation and object detection when using DDT as a tool
for generating valid external data sources from free but
noisy web data. This DDT based strategy is denoted as
DDT augmentation.

4.6.1 Webly-Supervised Classification

For web based image classification, we compare DDT
augmentation with the current state-of-the-art webly-
supervised classification method proposed by Zhuang
et al (2017). As discussed in the related work, Zhuang
et al (2017) proposed a group attention framework for
handling web data. In their method, it employed two
level attentions: the first level is designed as the group
attention for filtering out noise, and the second level
attention is based on the single image for capturing
discriminative regions of each image.

In the experiments, we test the methods on the
WebCars and WebImageNet datasets which are also
proposed by Zhuang et al (2017). In WebCars, there
are 213,072 car images of totally 431 car model cate-
gories collected from web. InWebImageNet, Zhuang et al
(2017) used 100 sub-categories of the original ImageNet
as the categories of their WebImageNet dataset. There
are 61,639 images belonging to the 100 sub-categories
from web in total.

In our DDT augmentation, as what we do in Sec. 4.5,
we first use DDT to obtain the number of positive values
in P

1 as the detection score for each image in every
category. Here, we divide the detection score by the
total number of values in P

1 as the noise rate which is
in the range of [0, 1]. The more the noise rate is close
to zero, the higher the probability of noisy images will
be. In the following, we conduct experiments with two
thresholds (i.e., 0 or 0.1) with respect to the noise rate. If
the noise rate of an image equals to or is smaller than the
threshold, that image will be regarded as a noisy image.

Fine-grained image retrieval (con’t)

Empirical results on ImageNet-Subset (disjoint with ImageNet)
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Fine-grained image recognition

Spatial Transformer Networks

]

] ]

]

U V

Localisation net

Sampler

Spatial Transformer

Grid !
generator

]
T✓(G)✓

Figure 2: The architecture of a spatial
transformer module. The input feature map
U is passed to a localisation network which
regresses the transformation parameters ✓.
The regular spatial grid G over V is trans-
formed to the sampling grid T✓(G), which
is applied to U as described in Sect. 3.3,
producing the warped output feature map V .
The combination of the localisation network
and sampling mechanism defines a spatial
transformer.

need for a differentiable attention mechanism, while [11] use a differentiable attention mechansim
by utilising Gaussian kernels in a generative model. The work by Girshick et al. [9] uses a region
proposal algorithm as a form of attention, and [6] show that it is possible to regress salient regions
with a CNN. The framework we present in this paper can be seen as a generalisation of differentiable
attention to any spatial transformation.

3 Spatial Transformers

In this section we describe the formulation of a spatial transformer. This is a differentiable module
which applies a spatial transformation to a feature map during a single forward pass, where the
transformation is conditioned on the particular input, producing a single output feature map. For
multi-channel inputs, the same warping is applied to each channel. For simplicity, in this section we
consider single transforms and single outputs per transformer, however we can generalise to multiple
transformations, as shown in experiments.

The spatial transformer mechanism is split into three parts, shown in Fig. 2. In order of computation,
first a localisation network (Sect. 3.1) takes the input feature map, and through a number of hidden
layers outputs the parameters of the spatial transformation that should be applied to the feature map
– this gives a transformation conditional on the input. Then, the predicted transformation parameters
are used to create a sampling grid, which is a set of points where the input map should be sampled to
produce the transformed output. This is done by the grid generator, described in Sect. 3.2. Finally,
the feature map and the sampling grid are taken as inputs to the sampler, producing the output map
sampled from the input at the grid points (Sect. 3.3).

The combination of these three components forms a spatial transformer and will now be described
in more detail in the following sections.

3.1 Localisation Network

The localisation network takes the input feature map U 2 RH⇥W⇥C with width W , height H and
C channels and outputs ✓, the parameters of the transformation T✓ to be applied to the feature map:
✓ = floc(U). The size of ✓ can vary depending on the transformation type that is parameterised,
e.g. for an affine transformation ✓ is 6-dimensional as in (1).

The localisation network function floc() can take any form, such as a fully-connected network or
a convolutional network, but should include a final regression layer to produce the transformation
parameters ✓.

3.2 Parameterised Sampling Grid

To perform a warping of the input feature map, each output pixel is computed by applying a sampling
kernel centered at a particular location in the input feature map (this is described fully in the next
section). By pixel we refer to an element of a generic feature map, not necessarily an image. In
general, the output pixels are defined to lie on a regular grid G = {Gi} of pixels Gi = (xt

i
, y

t

i
),

forming an output feature map V 2 RH
0⇥W

0⇥C , where H
0 and W

0 are the height and width of the
grid, and C is the number of channels, which is the same in the input and output.

For clarity of exposition, assume for the moment that T✓ is a 2D affine transformation A✓. We will
discuss other transformations below. In this affine case, the pointwise transformation is
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3

Model
Cimpoi ’15 [4] 66.7
Zhang ’14 [30] 74.9
Branson ’14 [2] 75.7
Lin ’15 [20] 80.9
Simon ’15 [24] 81.0
CNN (ours) 224px 82.3
2⇥ST-CNN 224px 83.1
2⇥ST-CNN 448px 83.9
4⇥ST-CNN 448px 84.1

Table 3: Left: The accuracy (%) on CUB-200-2011 bird classification dataset. Spatial transformer networks
with two spatial transformers (2⇥ST-CNN) and four spatial transformers (4⇥ST-CNN) in parallel outperform
other models. 448px resolution images can be used with the ST-CNN without an increase in computational
cost due to downsampling to 224px after the transformers. Right: The transformation predicted by the spatial
transformers of 2⇥ST-CNN (top row) and 4⇥ST-CNN (bottom row) on the input image. Notably for the 2⇥ST-
CNN, one of the transformers (shown in red) learns to detect heads, while the other (shown in green) detects
the body, and similarly for the 4⇥ST-CNN.

for some examples). In terms of computation speed, the ST-CNN Multi model is only 6% slower
(forward and backward pass) than the CNN.

4.3 Fine-Grained Classification

In this section, we use a spatial transformer network with multiple transformers in parallel to perform
fine-grained bird classification. We evaluate our models on the CUB-200-2011 birds dataset [28],
containing 6k training images and 5.8k test images, covering 200 species of birds. The birds appear
at a range of scales and orientations, are not tightly cropped, and require detailed texture and shape
analysis to distinguish. In our experiments, we only use image class labels for training.

We consider a strong baseline CNN model – an Inception architecture with batch normalisation [15]
pre-trained on ImageNet [22] and fine-tuned on CUB – which by itself achieves state-of-the-art ac-
curacy of 82.3% (previous best result is 81.0% [24]). We then train a spatial transformer network,
ST-CNN, which contains 2 or 4 parallel spatial transformers, parameterised for attention and acting
on the input image. Discriminative image parts, captured by the transformers, are passed to the part
description sub-nets (each of which is also initialised by Inception). The resulting part representa-
tions are concatenated and classified with a single softmax layer. The whole architecture is trained
on image class labels end-to-end with backpropagation (details in supplementary material).

The results are shown in Table 3 (left). The 4⇥ST-CNN achieves an accuracy of 84.1%, outperform-
ing the baseline by 1.8%. In the visualisations of the transforms predicted by 2⇥ST-CNN (Table 3
(right)) one can see interesting behaviour has been learnt: one spatial transformer (red) has learnt
to become a head detector, while the other (green) fixates on the central part of the body of a bird.
The resulting output from the spatial transformers for the classification network is a somewhat pose-
normalised representation of a bird. While previous work such as [2] explicitly define parts of the
bird, training separate detectors for these parts with supplied keypoint training data, the ST-CNN is
able to discover and learn part detectors in a data-driven manner without any additional supervision.
In addition, spatial transformers allows for the use of 448px resolution input images without any
impact on performance, as the output of the transformed 448px images are sampled at 224px before
being processed.

5 Conclusion

In this paper we introduced a new self-contained module for neural networks – the spatial trans-
former. This module can be dropped into a network and perform explicit spatial transformations
of features, opening up new ways for neural networks to model data, and is learnt in an end-to-
end fashion, without making any changes to the loss function. While CNNs provide an incredibly
strong baseline, we see gains in accuracy using spatial transformers across multiple tasks, result-
ing in state-of-the-art performance. Furthermore, the regressed transformation parameters from the
spatial transformer are available as an output and could be used for subsequent tasks. While we
only explore feed-forward networks in this work, early experiments show spatial transformers to be
powerful in recurrent models, and useful for tasks requiring the disentangling of object reference
frames.
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Abstract

We propose bilinear models, a recognition architecture

that consists of two feature extractors whose outputs are

multiplied using outer product at each location of the im-

age and pooled to obtain an image descriptor. This archi-

tecture can model local pairwise feature interactions in a

translationally invariant manner which is particularly use-

ful for fine-grained categorization. It also generalizes var-

ious orderless texture descriptors such as the Fisher vec-

tor, VLAD and O2P. We present experiments with bilinear

models where the feature extractors are based on convolu-

tional neural networks. The bilinear form simplifies gra-

dient computation and allows end-to-end training of both

networks using image labels only. Using networks initial-

ized from the ImageNet dataset followed by domain spe-

cific fine-tuning we obtain 84.1% accuracy of the CUB-

200-2011 dataset requiring only category labels at train-

ing time. We present experiments and visualizations that

analyze the effects of fine-tuning and the choice two net-

works on the speed and accuracy of the models. Results

show that the architecture compares favorably to the exist-

ing state of the art on a number of fine-grained datasets

while being substantially simpler and easier to train. More-

over, our most accurate model is fairly efficient running

at 8 frames/sec on a NVIDIA Tesla K40 GPU. The source

code for the complete system will be made available at

http://vis-www.cs.umass.edu/bcnn

1. Introduction
Fine-grained recognition tasks such as identifying the

species of a bird, or the model of an aircraft, are quite
challenging because the visual differences between the cat-
egories are small and can be easily overwhelmed by those
caused by factors such as pose, viewpoint, or location of the
object in the image. For example, the inter-category vari-
ation between “Ringed-beak gull” and a “California gull”
due to the differences in the pattern on their beaks is signifi-
cantly smaller than the inter-category variation on a popular
fine-grained recognition dataset for birds [37].

…

…

bilinear vector

softmax

convolutional + pooling layers

CNN stream A

CNN stream B

…

Chestnut_Sided_Warbler_0110_164023.jpg

chestnut!
sided!

warbler

Figure 1. A bilinear CNN model for image classification. At
test time an image is passed through two CNNs, A and B, and
their outputs are multiplied using outer product at each location of
the image and pooled to obtain the bilinear vector. This is passed
through a classification layer to obtain predictions.

A common approach for robustness against these nui-
sance factors is to first localize various parts of the object
and model the appearance conditioned on their detected
locations. The parts are often defined manually and the
part detectors are trained in a supervised manner. Recently
variants of such models based on convolutional neural net-
works (CNNs) [2, 38] have been shown to significantly
improve over earlier work that relied on hand-crafted fea-
tures [1, 11, 39]. A drawback of these approaches is that
annotating parts is significantly more challenging than col-
lecting image labels. Morevoer, manually defined parts may
not be optimal for the final recognition task.

Another approach is to use a robust image represen-
tation. Traditionally these included descriptors such as
VLAD [20] or Fisher vector [28] with SIFT features [25].
By replacing SIFT by features extracted from convolu-
tional layers of a deep network pre-trained on ImageNet [9],
these models achieve state-of-the-art results on a number
of recognition tasks [7]. These models capture local fea-
ture interactions in a translationally invariant manner which
is particularly suitable for texture and fine-grained recogni-
tion tasks. Although these models are easily applicable as
they don’t rely on part annotations, their performance is be-
low the best part-based models, especially when objects are
small and appear in clutter. Moreover, the effect of end-to-
end training of such architectures has not been fully studied.

1

Bilinear Convolutional Neural Networks
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Figure 5. Low dimensional B-CNN (M,M) models.

4. Discussion
One of the motivations for the bilinear model was the

modular separation of factors that affect the overall appear-
ance. But do the networks specialize into roles of local-
ization (“where”) and appearance modeling (“what”) when
initialized asymmetrically and fine-tuned? Fig. 6 shows the
top activations of several filters in the D-Net and M-Net of
the fine-tuned B-CNN [D, M] model. These visualizations
suggest that the roles of the two networks are not clearly
separated. Both these networks tend to activate strongly on
highly specific semantic parts. For example, the last row
of D-Net detects “tufted heads”, which can be seen as ei-
ther part or a feature (visualizations on other datasets can
be found in the supplementary material).

The above visualizations also suggests that the role of
features and parts in fine-grained recognition tasks can be
traded. For instance, consider the task of gender recogni-
tion. One approach is to first train a gender-neutral face de-
tector and followed by a gender classifier. However, it may
be better to train a gender-specific face detector instead. By
jointly training fA and fB the bilinear model can effectively
trade-off the representation power of the features based on
the data. Thus, manually defined parts not only requires sig-
nificant annotation effort but also is likely to be sub-optimal
when enough training data is available.

Our bilinear CNN models had two feature extractors
whose processing pathways separated early, but some of
the early processing in the CNNs may be shared. Thus one
can design a more efficient architecture where the feature
extractors share the first few stages of their processing and
then bifurcate to specialize in their own tasks. As long as the
structure of the network is a directed acyclic graph standard
back-propagation training applies. Our architecture is also
modular. For example, one could append additional feature
channels, either hand-crafted or CNNs, to the either fA or
fB only update the trainable parameters during fine-tuning.
Thus, one could train models with desired semantics, e.g.,
color, describable textures [6], or parts, for predicting at-

D-Net M-Net

Figure 6. Patches with the highest activations for several filters of
the fine-tuned B-CNN (D, M) model on CUB-200-2011 dataset.

tributes or sentences. Finally, one could extend the bilinear
model to a trilinear model to factor out another source of
variation. This could be applied for action recognition over
time where a third network could look at optical flow.

5. Conclusion

We presented bilinear CNN models and demonstrated
their effectiveness on various fine-grained recognition
datasets. Remarkably, the performance is comparable to
methods that use the similar CNNs and additionally rely
on part or bounding-box annotations for training. Our hy-
pothesis is that our intuition of features that can be extracted
from CNNs are poor and manually defined parts can be sub-
optimal in a pipelined architecture. The proposed models
can be fine-tuned end-to-end using image labels which re-
sults in significant improvements over other orderless tex-
ture descriptors based on CNNs such as the FV-CNN.

The model is also efficient requiring only two CNN eval-
uations on a 448⇥448 image. Our MatConvNet [36] based
implementation of the asymmetric B-CNN [D,M] runs at
8 frames/sec on a Tesla K40 GPU for the feature extrac-
tion step, only a small constant factor slower than a sin-
gle D-Net and significantly faster than methods that rely
on object or part detections. The symmetric models are
faster since they can be implemented with just a single
CNN evaluation, e.g., B-CNN [M,M] runs at 87 frames/sec,
while the B-CNN [D,D] runs at 10 frames/sec. The source
code for the complete system will be made available at
http://vis-www.cs.umass.edu/bcnn
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Fine-grained image recognition by localization-classification 
subnetworks 

Fine-grained image recognition (con’t)

2 Zhang, Donahue, Girshick, Darrell

Input images with region proposals 

Nearest neighbors used in geometric constraints 

Top scored object and part detections 

Object detection and part localizations Pose-normalized representation {"""""""""""""""""}"" classifier 

Northern 
Flicker  

Fig. 1. Overview of our part localization Starting from bottom-up region pro-
posals (top-left), we train both object and part detectors based on deep convolutional
features. During test time, all the windows are scored by all detectors (middle), and
we apply non-parametric geometric constraints (bottom) to rescore the windows and
choose the best object and part detections (top-right). The final step is to extract fea-
tures on the localized semantic parts for fine-grained recognition for a pose-normalized
representation and then train a classifier for the final categorization. Best viewed in
color.

deep part detection scheme, we propose an end-to-end fine grained categoriza-
tion system which requires no knowledge of object bounding box at test time,
and can achieve performance rivaling previously reported methods requiring the
ground truth bounding box at test time to filter false positive detections.

The recent success of convolutional networks, like [27], on the ImageNet Chal-
lenge [23] has inspired further work on applying deep convolutional features to
related image classification [14] and detection tasks [21]. In [21], Girshick et al.
achieved breakthrough performance on object detection by applying the CNN
of [27] to a set of bottom-up candidate region proposals [41], boosting PASCAL
detection performance by over 30% compared to the previous best methods.
Independently, OverFeat [38] proposed localization using a CNN to regress to
object locations. However, the progress of leveraging deep convolutional fea-
tures is not limited to basic-level object detection. In many applications such
as fine-grained recognition, attribute recognition, pose estimation, and others,
reasonable predictions demand accurate part localization.

Feature learning has been used for fine-grained recognition and attribute esti-
mation, but was limited to engineered features for localization. DPD-DeCAF [48]
used DeCAF [14] as a feature descriptor, but relied on HOG-based DPM [17] for
part localization. PANDA [49] learned part-specific deep convolutional networks

[Zhang et al., ECCV 2014]
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Fig. 2. Architecture of the proposed three-stream Mask-CNN model. The three streams correspond to the whole image, head and torso image patches, respectively. In each 
stream, we employ the learned part/object masks to select the useful deep descriptors, and then aggregate these selected descriptors by weights (presented by different 
colors in Fig. 2d) to form the final image representation. As shown, thanks to the descriptor selection scheme, a large number of descriptors corresponding to background 
can be discarded by M-CNN, which is beneficial to fine-grained recognition. (This figure is best viewed in color.) 
been developed in the literature [7,8,10–13,26–29] . We can roughly 
categorize these methods into three groups. The first group, e.g. , 
[26,27] , attempted to learn a more discriminative feature repre- 
sentation by developing powerful deep models for classifying fine- 
grained images. The second group aligned the objects in fine- 
grained images to eliminate pose variations and the influence of 
camera position, e.g. , [8,30,31] . The last group focused on part- 
based representations, because it is widely acknowledged that the 
subtle difference between fine-grained images mostly resides in 
the unique properties of object parts. 

For the part-based fine-grained recognition methods, 
[8,10,32] used both bounding boxes of the birds and part an- 
notations during training to learn an accurate part localization 
model. Then, based on these detected parts, different CNNs are 
fine-tuned using the detected parts separately. To ensure satisfac- 
tory localization results, they even used bounding boxes in the 
testing phase. In contrast, our method only need part annotations 
for training, and do not need any supervision during testing. 
Moreover, our three-stream M-CNN is a unified framework for 
capturing object- and part-level information simultaneously. 

Some other part-based methods considered a weakly super- 
vised setting, in which they categorize fine-grained images with 
only image-level labels, e.g. , [11,33–35] . As will be shown by 
our experiments, classification accuracy of M-CNN is significantly 
higher than these weakly supervised methods. Meanwhile, M-CNN 
discards the parameter redundant fully connected layers, which 
makes it efficient to train/inference. Besides, the dimensionality of 
image representations in M-CNN is quite low, cf. Table 1 . Therefore, 
M-CNN can be scalable to large-scale fine-grained datasets. 

Moreover, these part-based methods, e.g. , [10,11,33–36] , usually 
require to firstly produce object/part proposals by selective search 
[37] . By comparing with that, the proposed M-CNN is more con- 

cise, which can accurately localize fine-grained parts without utiliz- 
ing bounding boxes and redundant object proposals . 

In addition, there are also fine-grained recognition methods 
based on segmentation, e.g. , [7,38] . The most significant difference 
between them and M-CNN is: these methods only use segmenta- 
tion to localize the whole object [38] or parts [7] , while we fur- 
ther select useful deep convolutional descriptors using the masks 
obtained from segmentation. Among them, the part-stacked CNN 
model [7] is the most related work to ours. In [7] , part-stacked 
CNN requires both bounding boxes and part annotations in train- 
ing, and even needed the bounding boxes during testing. Within 
the image patch cropped using the bounding box, [7] treated the 
image crop around each of the fifteen part key points as 15 seg- 
mentation foreground classes, and used FCN to solve the 16-classes 
segmentation task. After obtaining the trained FCN, it localized 
these part point positions in the last convolutional layer. Then, 
deep activations corresponding to the fifteen parts and the whole 
object were stacked together. Fully connected layers were used 
for classification. Comparing with part-stacked CNN, M-CNN only 
needs to localize two main parts (head and torso), which makes 
the segmentation problem much easier and more accurate. M-CNN 
achieves high localization accuracy, as will be shown in Table 3 . 
Meanwhile, as demonstrated in [7] , using all the fifteen part ac- 
tivations cannot lead to better classification accuracy. Besides, M- 
CNN’s accuracy on CUB200-2011 is 2.0% higher than that of [7] us- 
ing the same baseline network, although we use less annotations 
in training and do not use any annotation in testing. More detailed 
empirical comparisons can be found in Section 4.2 . 
2.2. Deep descriptor selection 

As aforementioned, in the deep learning scenario, we might 
no longer need to select useful dimensions inside the learnt deep 
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Fig. 4. Random samples of successfully predicted part masks (on the left side) and four failure cases (on the right side) from the testing set on the CUB200-2011 [1] and 
Birdsnap [20] dataset, respectively. The first row of each subfigure contains input fine-grained images. The second row are the part masks predictions. In these figures, we 
overlay the part mask predicted by FCN (the head highlighted in red and the torso in blue) onto the original images. The pixels predicted as background are in black. The 
third row in (a) is the corresponding segmentation ground-truth provided in the CUB200-2011 dataset. The Birdsnap dataset does not supply the segmentation ground-truth 
for its fine-grained images. (The figures are best viewed in color.) 
proposed model is presented in Fig. 2 . We take the whole image 
stream as an example to illustrate the pipeline of each stream. 

The inputs of the whole image stream are the original im- 
ages resized to h ×h . In our experiments, we report the results for 
h = 224 and h = 448  , respectively. The input images are fed into 
a traditional convolutional neural network, but the fully connected 
layers are discarded. That is to say, the CNN model used in our pro- 
posed M-CNN only contains convolutional, ReLU and pooling lay- 
ers, which greatly brings down the M-CNN model size. Specifically, 
we use VGG-16  [21] as the baseline model, and the layers before 
pool 5 are kept (including pool 5 ). We obtain a 7 ×7 ×512 activation 
tensor in pool 5 if the input image is 224 ×224. Therefore, we have 
49  deep convolutional descriptors of 512-d, which also correspond 
to 7 ×7 spatial positions in the input images. Then, the learned ob- 
ject mask (cf. Section 3.1 ) is firstly resized to 7 ×7 by the bilinear 
interpolation, and then used for selecting useful and meaningful 
deep descriptors. 

As illustrated in Fig. 2 c and Fig. 2 d, the descriptor should be 
kept by weights when it locates in the object region. If it locates in 
the background region, that descriptor will be discarded. In our im- 
plementation, the mask contains the learned part/object segmenta- 
tion scores, which is a real matrix whose elements are in the range 
of [0, 1]. Correspondingly, 1 stands for absolutely keeping and 0 is 
for absolutely discarding. We implement the selection process as 
an element-wise product operation between the convolutional ac- 
tivation tensor and the mask matrix. Therefore, the descriptors lo- 
cated in the object region will remain by weights, while the other 
descriptors will become zero vectors. Concretely, if the pixels are 
predicted as head/torso by FCN, the real values of the mask are 
kept. Otherwise, if the pixels indicate the regions are background, 
the value of these background regions in the mask are reset to the 
zero value. Then, the processed masks are used for selecting de- 
scriptors and the rest processing. 

http://www.weixiushen.com/

Fine-grained image recognition by localization-classification 
subnetworks 

http://www.weixiushen.com/


Fine-grained image recognition (con’t)

Figure 2. The framework of recurrent attention convolutional neural network (RA-CNN). The inputs are from coarse full-size images to

finer region attention (from top to bottom). Different network modules for classification (marked in blue) and attention proposal (marked in

red) are alternatively optimized by classification losses Lcls between label prediction Y
(s) and ground truth Y

∗ at each scale, and pairwise

ranking losses Lrank between p(s)t and p(s+1)
t from neighboring scales, where p(s)t and p(s+1)

t denote the probabilities on the correct

category, and s denotes the scale. APN is the attention proposal network, fc represents fully-connected layer, softmax layer matches to

category entries by a fc layer, followed by a softmax operation. +⃝ represents “crop” and “zoom in” operation. [Best viewed in color]

dynamic mechanism that can actively spatially transform an
image for more accurate classification. Whereas, it is still d-
ifficult for existing models to exactly localize subtle regions
due to their small sizes. The most relevant works to ours
come from [20] and [35]. Both of them propose to zoom in
on discriminative local regions to improve the performance
of fine-grained recognition. However, the learning of region
localizers from [20] and [35] relies on either pre-processed
region proposals or category labels, which poses challenges
to accurate region localization.

3. Approach

In this section, we will introduce the proposed recurrent
attention convolutional neural network (RA-CNN) for fine-
grained image recognition. We consider the network with
three scales as an example in Figure 2, and more finer s-
cales can be stacked in a similar way. The inputs are recur-
rent from full-size images in a1 to fine-grained discrimina-
tive regions in a2 and a3, where a2 and a3 takes the input
as the attended regions from a1 and a2, respectively. First,
images at different scales are fed into convolutional layer-
s (b1 to b3) to extract region-based feature representation.
Second, networks proceed to predict both a probability s-
core by fully-connected and softmax layers (c1 to c3) and a
region attention by an attention proposal network (d1, d2).
The proposed RA-CNN is optimized to convergence by al-
ternatively learning a softmax classification loss at each s-
cale and a pairwise ranking loss across neighboring scales.

3.1. Attention Proposal Network

Multi-task formulation: Traditional part-based frame-
work on fine-grained recognition takes no advantages of the
deeply trained networks to mutually promote the learning
for both localization and recognition. Inspired by the recent
success of region proposal network (RPN) [8], in this paper,
we propose an attention proposal network (APN) where the
computation of region attention is nearly cost-free, and the
APN can be trained end-to-end.

Given an input image X, we first extract region-based
deep features by feeding the images into pre-trained con-
volutional layers. The extracted deep representations are
denoted as Wc ∗ X, where ∗ denotes a set of operations
of convolution, pooling and activation, and Wc denotes the
overall parameters. We further model the network at each
scale as a multi-task formulation with two outputs. The first
task is designed to generate a probability distribution p over
fine-grained categories, shown as:

p(X) = f(Wc ∗X), (1)

where f(·) represents fully-connected layers to map convo-
lutional features to a feature vector that could be matched
with the category entries, as well as includes a softmax lay-
er to further transform the feature vector to probabilities.
The second task is proposed to predict a set of box coor-
dinates of an attended region for the next finer scale. By
approximating the attended region as a square with three
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Qualitative results of RA-CNN
Figure 4. Five bird examples of the learned region attention at dif-

ferent scales. We can observe clear and significant visual cues for

classification after gradually zooming in the attended regions.

Table 2. Comparison of attention localization in terms of classifi-

cation accuracy on CUB-200-2011 dataset.

Approach Accuracy

FCAN (single-attention) [20] 76.1

MG-CNN (single-granularity) [28] 79.5

RA-CNN (scale 2) w/ initial {tx, ty , tl} 79.0

RA-CNN (scale 2) 82.4

ble results with the methods using human-defined bound-
ing box in Table 3. PA-CNN [14] and MG-CNN (with an-
no.) [28] achieves 82.8% and 83.0% accuracy, respective-
ly. RA-CNN (scale 2) achieves 82.4% accuracy. Second,
we can achieve significant better results compared with ex-
isting unsupervised part learning-based methods. FCAN
[20] and MG-CNN [28] are two relevant works to ours,
which also use feature combination scheme from multiple
scales/granularities. To make fair comparison, we selec-
t single-attention and single-granularity based performance
from [20] and [28], and show the results in Table 2. We
can obtain 8.3% and 3.6% relative improvement compared
with FCAN (single-attention) [20] and MG-CNN (single-
granularity) [28], which shows the superior attention learn-
ing ability of the proposed approach. Besides, the result of
RA-CNN with initialized attended region and without rank-
ing loss optimization is listed in the third row. From this
result, we can know the key role of ranking loss for opti-
mizing region attention.

Fine-grained image recognition: We compare with t-
wo types of baselines based on whether they use human-
defined bounding box (bbox)/part annotations. PN-CNN [2]
uses strong supervision of both human-defined bounding
box and ground truth parts. B-CNN [19] uses bounding box
with very high-dimensional feature representation (250k di-
mensions). As shown in Table 3, the proposed RA-CNN (s-
cale 1+2+3) can achieve comparable results with PN-CNN
[2] and B-CNN [19] even without bbox and part annota-
tion, which demonstrates the effectiveness. Compared with
unsupervised methods PDFR [34] without additional Fish-

Table 3. Comparison results on CUB-200-2011 dataset. Train An-

no. represents using bounding box or part annotation in training.

Approach Train Anno. Accuracy

DeepLAC [34] ! 80.3

Part-RCNN [33] ! 81.6

PA-CNN [14] ! 82.8

MG-CNN [28] ! 83.0

FCAN [20] ! 84.3

B-CNN (250k-dims) [19] ! 85.1

SPDA-CNN [32] ! 85.1

PN-CNN [2] ! 85.4

VGG-19 [27] 77.8

TLAN [31] 77.9

DVAN [35] 79.0

NAC [26] 81.0

MG-CNN [28] 81.7

FCAN [20] 82.0

PDFR [34] 82.6

B-CNN (250k-dims) [19] 84.1

ST-CNN (Inception net) [11] 84.1

RA-CNN (scale 2) 82.4

RA-CNN (scale 3) 81.2

RA-CNN (scale 1+2) 84.7

RA-CNN (scale 1+2+3) 85.3

er Vector learning, we can obtain a relative accuracy gain
with 3.3% by our full model RA-CNN (scale 1+2+3). We
even surpass B-CNN (w/o anno.) [19] and ST-CNN [11],
which uses either high-dimensional features or stronger in-
ception network as baseline model with nearly both 1.5%
relative accuracy gains. Although FCAN (w/o anno.) [20]
and DVAN [35] propose similar ideas to zoom into attend-
ed regions for classification, we can achieve better accuracy
with 4.1% and 8.0% relative improvement because of the
mutual reinforcement framework for attention localization
and region-based feature learning. Note that RA-CNN (s-
cale 2) outperforms VGG-19 results at scale 1 with clear
margins (5.9% relative gains), which shows the necessity
for “looking closer” on fine-grained categories. Besides,
RA-CNN (scale 3) slightly drop than RA-CNN (scale 2),
because of the missing of structural information existed in
global bird images. By combining features at three scales
via a fully-connected layer, we achieve the best 85.3% accu-
racy. Note that the superior result benefits from the comple-
mentary advantages from multiple scales. The combination
of triple single-scale network with different initial parame-
ters only achieves 78.0%, 83.5%, 82.0% for the first, second
and third scale, respectively. Besides, we extend RA-CNN
to more scales, but the performance saturates as discrimina-
tive information has been encoded into the previous scales.

4.3. Experiments on Stanford Dogs

The classification accuracy on Stanford Dogs dataset are
summarized in Table 4. The VGG-16 at the first scale takes
the original images as input and achieves 76.7% recogni-
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Figure 2: The framework of multi-attention convolutional neural network (MA-CNN). The network takes as input an image
in (a), and produces part attentions in (e) from feature channels (e.g., 512 in VGG [26]) in (c). Different network modules
for classification with light blue (i.e., the convolution in (b) and softmax in (g)), and part localization with purple (i.e., the
channel grouping in (d)) are iteratively optimized by classification loss Lcls over part-based representations in (f), and by
channel grouping loss Lcng, respectively. The softmax in (g) includes both a fully-connected layer, and a softmax function,
which matches to category entries. [Best viewed in color]

2.2. Discriminative Part Localization

A large amount of works propose to leverage the extra
annotations of bounding boxes and parts to localize sig-
nificant regions in fine-grained recognition [9, 16, 22, 30,
33, 34]. However, the heavy involvement of human efforts
make this task not practical for large-scale real problem-
s. Recently, there have been numerous emerging research
working for a more general scenario and proposing to use
unsupervised approach to learn part attention models. A vi-
sual attention-based approach proposes a two-level domain-
net on both objects and parts, where the part templates are
obtained by clustering scheme from the internal hidden rep-
resentations in CNN [31]. Picking deep filter responses [35]
and multi-grained descriptors [27] propose to learn a set
of part detectors by analyzing filter responses from CNN
that respond to specific patterns consistently in an unsuper-
vised way. Spatial transformer [10] takes one step further
and proposes a dynamic mechanism that can actively spa-
tially transform an image for more accurate classification.
The most relevant works to ours come from [25, 31, 35],
which learn candidate part models from convolutional chan-
nel responses. Compared with them, the advantages of
our work are two folds. First, we propose to learn parts
generation from a group of spatial-correlated convolutional
channels, instead of independent channels which often lack
strong discrimination power. Second, the fine-grained fea-
ture learning on parts and part localization are conducted in
a mutual reinforced way, which ensures multiple represen-
tative parts can be accurately inferred from the consistently
optimized feature maps.

3. Approach

Traditional part-based frameworks take no advantage of
the deeply trained networks to mutually promote the learn-
ing for both part localization and feature representation. In
this paper, we propose a multi-attention convolutional neu-
ral network (MA-CNN) for part model learning, where the
computation of part attentions is nearly cost-free and can be
trained end-to-end.

We design the network with convolution, channel group-
ing and part classification sub-networks in Figure 2. First,
the whole network takes as input full-size image in Figure 2
(a), which is fed into convolutional layers in Figure 2 (b)
to extract region-based feature representation. Second, the
network proceeds to generate multiple part attention maps
in Figure 2 (e) via channel grouping and weighting layers
in Figure 2 (d), followed by a sigmoid function to produce
probabilities. The resultant part representations are gener-
ated by pooling from region-based feature representations
with spatial attention mechanism, which is shown in Fig-
ure 2 (f). Third, a group of probability scores over each part
to fine-grained categories are predicted by fully-connected
and softmax layers in Figure 2 (g). The proposed MA-CNN
is optimized to convergence by alternatively learning a soft-
max classification loss over each part representation and a
channel grouping loss over each part attention map.

3.1. Multi-Attention CNN for Part Localization

Given an input image X, we first extract region-based
deep features by feeding the images into pre-trained con-
volutional layers. The extracted deep representations are
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(a) CUB-Birds (b) Stanford-Cars 

(c) FGVC-Aircraft 

Figure 6: Part localization results for individual examples from (a) CUB-Birds, (b) Stanford-Cars, and (c) FGVC-Aircraft.
The four parts on each dataset show consistent part attention areas for a specific fine-grained category, which are discrimina-
tive to classify this category from other.

Table 4: Comparison results on FGVC-Aircraft dataset.
Train Anno. represents using bounding box in training.

Approach Train Anno. Accuracy

MG-CNN [27] ! 86.6

MDTP [28] ! 88.4

FV-CNN [7] 81.5

B-CNN (250k-dims)[17] 84.1

RA-CNN [5] 88.2

MA-CNN (2 parts + object) 88.4

MA-CNN (4 parts + object) 89.9

relative gains), which shows the effectiveness of multiple
part proposes. MDTP [28] also proposes to detect parts by
bounding box annotation and geometric constraints. How-
ever, they don’t make full use of convolutional networks to
refine the features for localization. Compared with MDTP
[28], the 1.7% relative gain from MA-CNN (4 parts + objec-
t) further shows the important role for joint learning of fea-
tures and parts. Compared with RA-CNN [5], MA-CNN (2
parts + object) gets the comparable result and MA-CNN (4
parts + object) achieves 1.8% relative accuracy gain. A sim-
ilar performance saturation is observed by using six parts on
FGVC-Aircraft dataset.

4.5. Experiment on Stanford Cars

The classification results on Stanford Cars are summa-
rized in Table 5. Car part detection can significantly im-
prove the performance due to the discrimination and com-
plementarity from different car parts [32]. For example,
some car models can be easily identified from headlight-
s or air intakes in the front. We can observe from Fig-
ure 6 (b) that the four parts learned from cars are consis-
tent with human perception, which include the front/back
view, side view, car lights, and wheels. Due to the accurate
part localization, MA-CNN (4 parts + object) can achieve
a relative accuracy gain of 4.2%, compared with FCAN

Table 5: Comparison results on Stanford Cars dataset. Train
Anno. represents using bounding box in training.

Approach Train Anno. Accuracy

R-CNN [6] ! 88.4

FCAN [18] ! 91.3

MDTP [28] ! 92.5

PA-CNN [14] ! 92.8

FCAN [18] 89.1

B-CNN (250k-dims) [17] 91.3

RA-CNN [5] 92.5

MA-CNN (2 parts + object) 91.7

MA-CNN (4 parts + object) 92.8

[18] under the same experiment setting. This result from
our unsupervised part model is even comparable with PA-
CNN [14], which uses bounding boxes. We can observe
the marginal improvement compared with RA-CNN [5], be-
cause the multiple attention areas (e.g., the front view and
the car lights) locate close enough, which have been attend-
ed by RA-CNN as a whole part.

5. Conclusions

In this paper, we propose a multiple attention convolu-
tional neural network for fine-grained recognition, which
jointly learns discriminative part localization and fine-
grained feature representation. The proposed network does
not need bounding box/part annotations for training and can
be trained end-to-end. Extensive experiments demonstrate
the superior performance on both multiple-part localization
and fine-grained recognition on birds, aircrafts and cars. In
the future, we will conduct the research on two directions.
First, how to integrate the structural and appearance models
from parts for better recognition performance. Second, how
to capture smaller parts (e.g., eyes of a bird) to represent the
more subtle differences between fine-grained categories by
unsupervised part learning approaches.
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Abstract

The growing explosion in the use of surveillance cam-

eras in public security highlights the importance of ve-

hicle search from a large-scale image or video database.

However, compared with person re-identification or face

recognition, vehicle search problem has long been ne-

glected by researchers in vision community. This paper

focuses on an interesting but challenging problem, vehicle

re-identification (a.k.a precise vehicle search). We propose

a Deep Relative Distance Learning (DRDL) method which

exploits a two-branch deep convolutional network to project

raw vehicle images into an Euclidean space where distance

can be directly used to measure the similarity of arbitrary

two vehicles. To further facilitate the future research on

this problem, we also present a carefully-organized large-

scale image database “VehicleID”, which includes multi-

ple images of the same vehicle captured by different real-

world cameras in a city. We evaluate our DRDL method on

our VehicleID dataset and another recently-released vehi-

cle model classification dataset “CompCars” in three sets

of experiments: vehicle re-identification, vehicle model ver-

ification and vehicle retrieval. Experimental results show

that our method can achieve promising results and outper-

forms several state-of-the-art approaches.

1. Introduction

Nowadays, there is an explosive growing requirement
of vehicle search and re-identification (Re-ID) from large-
scale surveillance image and video database in public secu-
rity systems. License plate naturally is an unique ID of a
vehicle, and license plate recognition has already been used
widely in transportation management applications. Unfor-
tunately, we can not identify a vehicle simply by its plate
in some cases. First, most surveillance cameras are not in-

∗Corresponding author:Yonghong Tian and Yaowei Wang (email: yh-
tian@pku.edu.cn, yaoweiwang@bit.edu.cn).

stalled for license plate capturing, thus, plate recognition
performance drops dramatically on images/video data cap-
tured by these cameras. Furthermore, license plates are of-
ten occluded, removed, or even faked in a large number
of previous security events. Therefore, vision-based ve-
hicle re-identification has a great practical value in real-
world surveillance applications. Specifically, vehicle re-
identification is the problem of identifying the same vehicle
across different surveillance camera views. Fig. 1 gives a
straightforward description of it.

Figure 1. Given multiple candidates as the gallery set, the vehicle

re-identification task is to find the matched one for each probe im-

age. Notice that the illumination and viewpoint in different cam-

eras can be varied a lot and different vehicles could be quite similar

if they are of the same model.

Though the problem of vehicle re-identification has al-
ready been discussed for many years, most of the existed
works rely on a various of different sensors [18, 10, 12].
To our knowledge, there is no previous attempt on the vehi-
cle re-identification task purely by vehicle’s visual appear-
ance yet and the primary reason could be the lack of high-
quality and large-scale vehicle Re-ID datasets. Existed ve-
hicle datasets [9, 21] are usually designed for vehicle at-
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tributes recognition(e.g. color, type, make, and model). In
this paper, we present a new vehicle re-identification dataset
named “VehicleID”, which is collected from multiple real-
world surveillance cameras and includes over 200,000 im-
ages of about 26,000 vehicles. All images are attached with
id numbers indicating their true identities(according to the
vehicle’s license plate). In addition, nearly 90,000 images
of 10,319 vehicles in this dataset have been labeled with the
vehicle model information. Thus, it can also be used for
fine-grained vehicle model recognition.

Another potential reason may be that compared with
the classic person re-identification problem, vehicle re-
identification could be more challenging as too many (usu-
ally thousands) vehicles of one same model have similar vi-
sual appearance. It is really difficult even for humans to tell
the difference between vehicles of the same model without
using their license plates. Nevertheless, there are some spe-
cial marks that can be used to identify a vehicle from oth-
ers, such as some customized painting, favorite decorations,
or even scratches etc. (as illustrating in Fig. 2). There-
fore, vehicle re-identification algorithm should be able to
capture both the inter-class and intra-class difference effi-
ciently. Deep feature has been proved more effective and
robust for recognition task. Inspired by one of the state-of-
the-art method in person re-identification [4], we propose a
Deep Relative Distance Learning (DRDL) model to address
the vehicle re-identification problem.

DRDL is an end-to-end framework (Fig. 3) specifically
designed for vehicle re-identification. It aims to learn a deep
convolutional network that can project raw vehicle images
into an Euclidean space where the L2 distance can thus be
used directly to measure the similarity of arbitrary two ve-
hicles. The basic idea of DRDL is to minimize the dis-
tances of the same vehicle images and maximize those of
other vehicles. Therefore, a coupled cluster loss function
and a mixed difference network structure are introduced in
DRDL framework. As shown in Fig. 3, the input of DRDL
are two image sets: one positive set (images of the same
vehicle identity) and one negative set (images of other ve-
hicles). The coupled cluster loss is to pull the positive im-
ages closer and push those negative ones far away. While
the mixed difference network structure will benefit the map-
ping model with more explicit model information. Namely,
deep feature and the distance metric are learned simultane-
ously in an unified DRDL framework. The experimental
results show that our method can achieve promising results
and outperforms several state-of-the-art approaches.

Rest of the paper is organized as follows: Related works
are reviewed in section 2. In section 3, we discuss our
coupled clusters loss function and a unified deep network
structure specifically designed for vehicle re-identification.
Section 4 gives an detailed description of our dataset “Vehi-
cleID” including how we collect and organize the raw im-

Figure 2. Special marks which can be used for identification task.

Figure 3. Framework of our model for vehicle re-identification.

The deep neural network aims to map the original vehicle images

into an Euclidean space that the images of the same vehicle tend

to form a cluster while other images tend to locate relatively far

away.

ages, the total number of vehicles and extra vehicle model
annotations on part of this dataset. The evaluation protocols
and experimental results are presented in section 5.

2. Related Work

Most previous object identification research targets at ei-
ther person or human face. Both of them have long been
popular topics in computer vision communities and can be
described as an unified problem: given a probe image and
multiple candidates as the gallery, we need to decide which
one in gallery is the same object of the probe image. How-
ever, there is not much work on vehicle re-identification be-
fore even though vehicle is at least of equal importance as
person and human face in real-world applications. The most
closely related problems which targets at vehicle include ve-
hicle model classification[23, 9, 14, 13] and vehicle model
verification[21]. But being different from our task, all those
methods can only reach the vehicle model level instead of
identifying whether two vehicles are exactly the same one.
Thus, person re-identification is actually the most closely
related problem of ours.

Existed approaches of person re-identification mainly
rely on handcrafted features like color or texture histograms
and then try to model the transformation of person’s ap-
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Figures are courtesy of [Liu et al., CVPR 2016].
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Abstract

Vehicle re-identification is an important problem and be-
comes desirable with the rapid expansion of applications in
video surveillance and intelligent transportation. By recall-
ing the identification process of human vision, we are aware
that there exists a native hierarchical dependency when hu-
mans identify different vehicles. Specifically, humans always
firstly determine one vehicle’s coarse-grained category, i.e.,
the car model/type. Then, under the branch of the predicted
car model/type, they are going to identify specific vehicles
by relying on subtle visual cues, e.g., customized paintings
and windshield stickers, at the fine-grained level. Inspired
by the coarse-to-fine hierarchical process, we propose an
end-to-end RNN-based Hierarchical Attention (RNN-HA)
classification model for vehicle re-identification. RNN-HA
consists of three mutually coupled modules: the first module
generates image representations for vehicle images, the sec-
ond hierarchical module models the aforementioned hierar-
chical dependent relationship, and the last attention module
focuses on capturing the subtle visual information distin-
guishing specific vehicles from each other. By conducting
comprehensive experiments on two vehicle re-identification
benchmark datasets VeRi and VehicleID, we demonstrate
that the proposed model achieves superior performance over
state-of-the-art methods.

1. Introduction

Vehicle re-identification is an important yet frontier prob-
lem, which aims at determining whether two images are
taken from the same specific vehicle. It has diverse ap-
plications in video surveillance [26], intelligent transporta-
tion [33] and urban computing [36]. Moreover, vehicle re-
identification has recently drawn increasing attentions in the
computer vision community [16, 17, 21].

Compared with the classic person re-identification prob-
lem, vehicle re-identification could be more challenging as
different specific vehicles can only be distinguished by slight

Audi A6Benz 
GLK

BMW 3 
Series C

oarse-to-fine

Model level

Vehicle level

Query

… …

… …

Figure 1: Illustration of coarse-to-fine hierarchical informa-
tion as a latent but crucial cue for vehicle re-identification.
(Best viewed in color and zoomed in.)

and subtle differences, such as some customized paintings,
windshield stickers, favorite decorations, etc. Nevertheless,
there still conceals some latent but crucial information for
handling this problem. As shown in Fig. 1, when humans
identify different vehicles, they always follow a coarse-to-
fine identification process. Specifically, we tend to firstly de-
termine this specific vehicle belongs to which car model/type.
The first step can eliminate many distractors, i.e., vehicles
with similar subtle visual appearances but belonging to the
other different car models/types. In the following, within the
candidate vehicle set of the same car model/type, humans
will carefully distinguish different vehicles from each other
by using these subtle visual cues. Apparently, there is a hier-
archical dependency in this coarse-to-fine process, which is
yet neglected by previous studies [14, 16, 17, 21].

Motivated by such human’s identification process, we

1
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Figure 2: Framework of the proposed RNN-HA model. Our model consists of three mutually coupled modules, i.e.,
representation learning module, RNN-based hierarchical module and attention module. (Best viewed in color.)

non-linear activation function. The GRU updates for time
step t given inputs xt, ht�1 are:

zt = �(Wxzxt +Whzht�1 + bz) , (1)
rt = �(Wxrxt +Whrht�1 + br) , (2)
nt = tanh(Wxgxt + rt �Whght�1 + bg) , (3)
ht = (1� zt)� nt + zt � ht�1 . (4)

Here, � represents the product with a gate value, and various
W matrices are learned parameters.

As shown in Fig. 2, we decompose the coarse-to-fine
hierarchical classification problem into an ordered prediction
path, i.e., from car model to specific vehicle. The prediction
path can reveal the hierarchical characteristic beneath this
two-stage classification problem. Meanwhile, the probability
of a path can be computed by the RNN model.

As aforementioned, since we aim to solve coarse-grained
classification at the first step, global image features which
represent global visual information are required. Thus, the
image embedding vector x1 produced by simply global aver-
age pooling is used as the input at the first time step (t = 1)
in the hierarchical module. Then, the output vector o1 at
t = 1 is employed for computing the coarse-grained (model-
level) classification loss, i.e., Lmodel. At the same time, o1

will be transformed via a transformer network (cf. the green
sub-module in Fig. 2) into an attention guidance signal w.
The attention signal can guide the subsequent attention net-
work to learn which deep descriptors should be attended
when identifying different specific vehicles. The details of
the attention network are presented in the next sub-section.

Now suppose we obtain a well-trained attention network,
it could focus on these descriptors corresponding to subtle
discriminative image regions (e.g., customized paintings,
favorite decorations, etc.), and neglect these descriptors cor-
responding to common patterns (e.g., the similar headlights,

car roofs, etc). Based on the attentions on descriptors, we
can obtain the attention embedding vector x2 which is also
the input of the RNN-based hierarchical module at t = 2.
The rest procedure at time step 2 is computing the loss in
fine-grained classification (i.e., vehicle-level classification)
based on the output vector o2.

At last, the final loss of our RNN-HA is formed by the
summation of both the coarse-grained (i.e., model-level) and
fine-grained (i.e., vehicle-level) classification loss as:

L = Lmodel + Lvehicle . (5)

In our implementation, the traditional cross entropy loss
function is employed in each loss branch.

3.2.2 Attention module

After performing the coarse-grained classification, it is re-
quired to identify different specific vehicles at this fine-
grained level. What distinguishes different vehicles from
each other is the subtle visual information, such as cus-
tomized paintings, windshield stickers, favorite decorations,
etc. To capture these subtle but important cues, we propose
to use an attention model to focus processing only on the
attended deep descriptors reflecting those cues. Meanwhile,
discarding those descriptors corresponding to common pat-
terns, e.g., the same car roofs of the same one car model, is
also crucial for identifying specific vehicles.

To achieve these goals, we rely on the output o1 of the
RNN-based hierarchical module at t = 1 by regarding it
as the guidance signal for the subsequent attention learning.
Specifically, we design a transformer network to transform
o1 into a new space where it could play a role as the attention
guidance signal w. The transformer network contains two
fully connected layers with a ReLU layer between them.
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Table 1: Comparison of different methods on VeRi [16].

Methods mAP Top-1 Top-5
LOMO [13] 9.64 25.33 46.48

BOW-CN [34] 12.20 33.91 53.69
GoogLeNet [31] 17.89 52.32 72.17

FACT [16] 18.75 52.21 72.88
Siamese-Visual [21] 29.48 41.12 60.31

Simple fine-tune 46.33 60.13 74.79
RNN-H w/o attention 48.92 63.28 78.82

Our RNN-HA 52.88 66.03 80.51
Our RNN-HA (ResNet) 56.80 74.79 87.31

and 2.75% top-1 accuracy. It justifies our proposed attention
module when identifying different specific vehicles at the
fine-grained classification level.

In addition, to further improve the re-identification accu-
racy, we simply replace the VGG CNN M 1024 model of
the representation learning module with ResNet-50 [6]. Our
modified model is denoted as “RNN-HA (ResNet)”, which
obtains 56.80% mAP, 74.79% top-1 accuracy and 87.31%
top-5 accuracy on VeRi, respectively.

4.3.3 Comparison results on VehicleID

For the large-scale dataset, VehicleID, we report the com-
parison results in Table 2. On different test settings (i.e.,
test size = 800, 1, 600 and 2, 400), our proposed RNN-HA
achieves the best re-identification performance on this large-
scale dataset. An interesting observation is that the “simple
fine-tune” baseline method outperforms the state-of-the-arts
on both VeRi and VehicleID. It is consistent with the obser-
vations in recently most successful person re-identification
approaches, e.g., [35, 37]. These approaches argue that a
classification loss is superior for the re-identification task,
while the triplet loss or siamese-based nets perform unsatis-
factorily due to its tricky training example sampling strategy.

From the qualitative perspective, Fig. 4 shows the learned
attention maps (i.e., a(i,j) in Eq. 7) of several random sam-
pled test vehicle images. We can find that the attended
regions accurately correspond to these subtle and discrimina-
tive image regions, such as windshield stickers, stuffs placed
behind windshield or rear windshield, and customized paint-
ings. In addition, Fig. 5 presents several re-identification
returned results on VehicleID.

Furthermore, on this large-scale dataset, we also use input
images with a high image resolution, i.e., 672⇥ 672, since
higher resolution could benefit to learn a more accurate atten-
tion map. The RNN-HA model with the 672⇥672 resolution
is denoted by “RNN-HA (672)”. Apparently, it improves the
re-identification top-1 accuracy by 5 ⇠ 6%. Besides, based
on the high resolution, we also modify RNN-HA by equip-
ping it with ResNet-50, and report its results as “RNN-HA
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 83.63% Our RNN−HA (ResNet+672)

Figure 3: The CMC curves of our proposed method and
baselines on the VehicleID dataset (test size=800).

Figure 4: Examples of the attention maps on the large-scale
VehicleID dataset. The brighter the region, the higher the
attention scores. (Best viewed in color and zoomed in.)

(ResNet+672)” in Table 2. On such challenging large-scale
dataset, even though we only depend on appearance informa-
tion, our model could achieve 83.8% top-1 accuracy, which
reveals its effectiveness in real-life applications. In addi-
tion, for ablation studies, we present the CMC curves of our
proposed model with its two baseline methods in Fig. 3. It
is apparent to observe that our RNN-HA and its variants
significantly outperform the baselines. The CMC curves on
VeRi has almost identical trends of the curves on VehicleID.
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Table 1: Comparison of different methods on VeRi [16].

Methods mAP Top-1 Top-5
LOMO [13] 9.64 25.33 46.48

BOW-CN [34] 12.20 33.91 53.69
GoogLeNet [31] 17.89 52.32 72.17

FACT [16] 18.75 52.21 72.88
Siamese-Visual [21] 29.48 41.12 60.31

Simple fine-tune 46.33 60.13 74.79
RNN-H w/o attention 48.92 63.28 78.82

Our RNN-HA 52.88 66.03 80.51
Our RNN-HA (ResNet) 56.80 74.79 87.31

and 2.75% top-1 accuracy. It justifies our proposed attention
module when identifying different specific vehicles at the
fine-grained classification level.

In addition, to further improve the re-identification accu-
racy, we simply replace the VGG CNN M 1024 model of
the representation learning module with ResNet-50 [6]. Our
modified model is denoted as “RNN-HA (ResNet)”, which
obtains 56.80% mAP, 74.79% top-1 accuracy and 87.31%
top-5 accuracy on VeRi, respectively.

4.3.3 Comparison results on VehicleID

For the large-scale dataset, VehicleID, we report the com-
parison results in Table 2. On different test settings (i.e.,
test size = 800, 1, 600 and 2, 400), our proposed RNN-HA
achieves the best re-identification performance on this large-
scale dataset. An interesting observation is that the “simple
fine-tune” baseline method outperforms the state-of-the-arts
on both VeRi and VehicleID. It is consistent with the obser-
vations in recently most successful person re-identification
approaches, e.g., [35, 37]. These approaches argue that a
classification loss is superior for the re-identification task,
while the triplet loss or siamese-based nets perform unsatis-
factorily due to its tricky training example sampling strategy.

From the qualitative perspective, Fig. 4 shows the learned
attention maps (i.e., a(i,j) in Eq. 7) of several random sam-
pled test vehicle images. We can find that the attended
regions accurately correspond to these subtle and discrimina-
tive image regions, such as windshield stickers, stuffs placed
behind windshield or rear windshield, and customized paint-
ings. In addition, Fig. 5 presents several re-identification
returned results on VehicleID.

Furthermore, on this large-scale dataset, we also use input
images with a high image resolution, i.e., 672⇥ 672, since
higher resolution could benefit to learn a more accurate atten-
tion map. The RNN-HA model with the 672⇥672 resolution
is denoted by “RNN-HA (672)”. Apparently, it improves the
re-identification top-1 accuracy by 5 ⇠ 6%. Besides, based
on the high resolution, we also modify RNN-HA by equip-
ping it with ResNet-50, and report its results as “RNN-HA
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Figure 3: The CMC curves of our proposed method and
baselines on the VehicleID dataset (test size=800).

Figure 4: Examples of the attention maps on the large-scale
VehicleID dataset. The brighter the region, the higher the
attention scores. (Best viewed in color and zoomed in.)

(ResNet+672)” in Table 2. On such challenging large-scale
dataset, even though we only depend on appearance informa-
tion, our model could achieve 83.8% top-1 accuracy, which
reveals its effectiveness in real-life applications. In addi-
tion, for ablation studies, we present the CMC curves of our
proposed model with its two baseline methods in Fig. 3. It
is apparent to observe that our RNN-HA and its variants
significantly outperform the baselines. The CMC curves on
VeRi has almost identical trends of the curves on VehicleID.
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Figures are courtesy of Z. Liu.
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Abstract

Over recent years, emerging interest has occurred in inte-

grating computer vision technology into the retail industry.

Automatic checkout (ACO) is one of the critical problems in

this area which aims to automatically generate the shopping

list from the images of the products to purchase. The main

challenge of this problem comes from the large scale and

the fine-grained nature of the product categories as well as

the difficulty for collecting training images that reflect the

realistic checkout scenarios due to continuous update of the

products. Despite its significant practical and research value,

this problem is not extensively studied in the computer vision

community, largely due to the lack of a high-quality dataset.

To fill this gap, in this work we propose a new dataset to

facilitate relevant research. Our dataset enjoys the following

characteristics: (1) It is by far the largest dataset in terms of

both product image quantity and product categories. (2) It

includes single-product images taken in a controlled environ-

ment and multi-product images taken by the checkout system.

(3) It provides different levels of annotations for the check-

out images. Comparing with the existing datasets, ours is

closer to the realistic setting and can derive a variety of

research problems. Besides the dataset, we also benchmark

the performance on this dataset with various approaches.

1. Introduction
The retail industry requires a huge amount of human labor

and a large percentage of the workload is spent on recog-
nizing products. With the recent development of computer
vision, it becomes increasingly demanding to use image
recognition technologies to automate the products recogni-
tion. As a primary user-case of this trend, automatic check-
out (ACO) which aims to generate the shopping list from
the images of the products to purchase receives emerging
interests. From the image recognition perspective, this prob-
lem is particularly challenging: the number of products in a
supermarket can be huge and the difference between similar
products can be subtle; moreover, since it can be impractical
to collect a large number of training images per product, the
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Figure 1. Illustration of the automatic checkout (ACO) application
scenario. When a customer puts his/her collected products on the
checkout counter, the system will automatically recognize each
product and returns a complete shopping list with total price.

training of the recognition model has to deal with the small
training sample size. Even worse, in some cases, is that we
may only have access to the product images taken in an envi-
ronment different from the deployment scenario and there is
a substantial domain shift from the training set to the test set.
Therefore, the ACO problem can have the characteristic of
large-scale, fine-grained, few-shot and cross-domain. Each
of those factors has been considered to be challenging in the
computer vision literature.

Despite its potential practical and research value, the
ACO problem is not well studied in the computer vision
community. This is largely due to the lack of a high-quality
dataset with a clearly defined setting. To fill this gap, in
this work we propose a new dataset to facilitate future re-
search on this topic. The design of our dataset mimics the
real-world scenarios in ACO. More specifically, it contains
a large number of images and product categories. Some
of the product categories are visually very similar and this
reflects the fine-grained property in the ACO problem. This
dataset also provides images of two different types. One
type is taken in a controlled environment and only contains
a single product. This can correspond to product images on
the advertisement website. Another type represents images
of user-purchased products and these images usually include
multiple products. For the second type of images, we also
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Abstract

Over recent years, emerging interest has occurred in inte-

grating computer vision technology into the retail industry.

Automatic checkout (ACO) is one of the critical problems in

this area which aims to automatically generate the shopping

list from the images of the products to purchase. The main

challenge of this problem comes from the large scale and

the fine-grained nature of the product categories as well as

the difficulty for collecting training images that reflect the

realistic checkout scenarios due to continuous update of the

products. Despite its significant practical and research value,

this problem is not extensively studied in the computer vision

community, largely due to the lack of a high-quality dataset.

To fill this gap, in this work we propose a new dataset to

facilitate relevant research. Our dataset enjoys the following

characteristics: (1) It is by far the largest dataset in terms of

both product image quantity and product categories. (2) It

includes single-product images taken in a controlled environ-

ment and multi-product images taken by the checkout system.

(3) It provides different levels of annotations for the check-

out images. Comparing with the existing datasets, ours is

closer to the realistic setting and can derive a variety of

research problems. Besides the dataset, we also benchmark

the performance on this dataset with various approaches.

1. Introduction
The retail industry requires a huge amount of human labor

and a large percentage of the workload is spent on recog-
nizing products. With the recent development of computer
vision, it becomes increasingly demanding to use image
recognition technologies to automate the products recogni-
tion. As a primary user-case of this trend, automatic check-
out (ACO) which aims to generate the shopping list from
the images of the products to purchase receives emerging
interests. From the image recognition perspective, this prob-
lem is particularly challenging: the number of products in a
supermarket can be huge and the difference between similar
products can be subtle; moreover, since it can be impractical
to collect a large number of training images per product, the
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Figure 1. Illustration of the automatic checkout (ACO) application
scenario. When a customer puts his/her collected products on the
checkout counter, the system will automatically recognize each
product and returns a complete shopping list with total price.

training of the recognition model has to deal with the small
training sample size. Even worse, in some cases, is that we
may only have access to the product images taken in an envi-
ronment different from the deployment scenario and there is
a substantial domain shift from the training set to the test set.
Therefore, the ACO problem can have the characteristic of
large-scale, fine-grained, few-shot and cross-domain. Each
of those factors has been considered to be challenging in the
computer vision literature.

Despite its potential practical and research value, the
ACO problem is not well studied in the computer vision
community. This is largely due to the lack of a high-quality
dataset with a clearly defined setting. To fill this gap, in
this work we propose a new dataset to facilitate future re-
search on this topic. The design of our dataset mimics the
real-world scenarios in ACO. More specifically, it contains
a large number of images and product categories. Some
of the product categories are visually very similar and this
reflects the fine-grained property in the ACO problem. This
dataset also provides images of two different types. One
type is taken in a controlled environment and only contains
a single product. This can correspond to product images on
the advertisement website. Another type represents images
of user-purchased products and these images usually include
multiple products. For the second type of images, we also
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Figure 6. Sampled images of totally 200 retail products belonging to 17 meta categories. For each meta category, we select three products
for presentation.

(a) Examples of bottle-like SKUs. (b) Examples of bag-like SKUs.

Figure 7. Sampled images of single products. Note that, for bag-
like and box-like SKUs, we collect both front and back appearance
images.

challenges for ACO system.
We collect 51,499 single-product images for isolated

SKUs as exemplar images and 30,000 checkout images for
ACO system evaluation. Table 1 shows a detailed compari-
son between our RPC dataset and existing relevant datasets.
We introduce the construction details for these two types of
images in the following parts.

Construction for single-product exemplar images:
Fig. 3 shows the collection environment for capturing the
exemplar images. To capture multi-view characteristics for
each isolated SKU, four cameras are mounted in different
positions to capture images from four different views. One
camera covers the top view, one camera covers the hori-
zontal view, and the other two cameras cover the 45� and
30� views, respectively. The cameras are with automatic
focus and capture images with resolution 2592⇥ 1944. We
randomly choose one instance from each SKU and place it
on a turntable which can rotate 360 degrees. Each camera
takes a photo for this SKU every 9 degrees. Thus, we have
4 ⇥ (360/9) = 160 views for each SKU. In addition, for
box-like and bag-like SKUs, because their top view is nor-
mally different from the bottom view, we repeat the above
collecting procedure twice to collect images for both sides.

Figure 8. Collection environment of checkout images. Red rectan-
gle marks the camera, and the blue quadrangle is the white board
as checkout background.

Some example collections from the four cameras are shown
in Fig. 7. In total, we collect 51,181 exemplar images for
200 isolated SKUs.

Construction for checkout images: To capture the check-
out images, the products are placed on a 80cm⇥80cm
white board as background with a camera (with resolution
1800⇥1800) mounted on top. The collection environment is
shown in Fig. 8. Based on the number of SKUs as well as the
number of product instances for each SKU, we collect check-
out images with three clutter levels: i.e., easy, medium
and hard. Table 2 shows the details of the three splits. Gen-
erally, the more products presented on the board, the more
challenging thing is to accurately recognize the whole set of
products due to problems such as occlusion, varying orienta-
tions and complex clutter and density patterns, as shown in
Fig. 4. To capture a checkout image, we mimic the realistic
checkout scenario. Concretely, we select a random set of
SKUs and a random number of product instances for each of
the selected SKUs guided by specific clutter level (Table 2),
and freely place these products onto the board. To capture
comprehensive product combinations, for each clutter level,
we repeat this process 10,000 times to collect 10,000 images.
Thus in total, we collect 30,000 checkout images.
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3. A new dataset for the automatic checkout
(ACO) problem

3.1. Automatic product checkout: a new computer
vision task

This subsection formally defines the problem setting for
the automatic checkout (ACO ) task. To begin with, we will
briefly review the application scenario of the ACO problem.

When a customer puts his/her selected products on the
checkout counter, an ideal ACO system is expected to be able
to accurately recognize each of these products and return
a complete shopping list at one glance, as shown in Fig. 1.
Thus the key of an ACO system is a recognition system
that can accurately predict the presence and count of each
product in an arbitrary product combination. Usually, such
a recognition system is trained with the images captured
at the same environment as the deployment scenario. In
the context of the ACO problem, the training image should
be the one taken at the checkout counter, which captures
a combination of multiple product instances (we call it the
checkout image hereafter). However, due to a large number
of product categories as well as the continuous update of
the stock list, it is infeasible to learn the recognition model
by enumerating all the product combinations. In fact, it is
even impractical to assume that the checkout images cover
every single product on the stock list. A more economical
solution is to train the recognition system by using images
of each isolated product taken in a controlled environment.
Once taken, those images can be reused and distributed to
different deployment scenarios.

Inspired by the above scenario, we formally define the
ACO problem as follows: Given a set of candidate products
P = {pi} and a test image from the test set It 2 T , the
task is to predict the presence and count of each product in
the test image, in other words, predicting count(p) 8p 2 P ,
where count(p) indicates the number of occurrences in the
test image and count(p) = 0 if the product does not appear.
To perform this prediction and build the model, we will have
a single-product image set S = {(Is, ys)|ys 2 P}, where
Is is a single-product image and ys is its associated product
ID/category. Also, we may have access to a checkout image
set C{(Ic, Yc)} with optional availability of a certain level
of annotations Yc, e.g., Yc can correspond to the annotations
in Sec. 3.2.1.

3.2. Proposed retail product checkout (RPC)
dataset

In this section, we elaborate the details of the proposed
retail product checkout (RPC) dataset. To start with, we
will introduce the characteristics of the dataset. Then, the
construction details for the dataset will be given. Finally, we
present the evaluation metrics adopted in this paper for the
ACO problem.
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Figure 2. Comparisons with other related datasets in the literature.

3.2.1 Characteristics of the proposed RPC dataset

In this paper, we propose the RPC dataset to support research
on approaches to address the potential challenges in real-
world ACO scenarios. The characteristics of the dataset can
be summarized into six aspects.

• Large-scale: As shown in Fig. 2, our RPC dataset is the
largest dataset so far for retail ACO in terms of product
categories (stock keeping units or SKUs) and product
images. To collect this dataset, we choose 200 SKUs
and purchase on average 4 instances for each SKU,
which almost doubles the category size of previous
largest dataset. In total, we capture 81,499 images
including 51,499 single-product exemplar images, and
30,000 checkout images.

• Single-product exemplar images and checkout im-
ages: In our dataset, we collect two types of images.
One type is the exemplar image for every single prod-
uct (Fig. 3) and the other type is the checkout image
(Fig. 4) taken at the checkout counter. While the ex-
emplar images capture the multi-view appearances of
the isolated SKU, the checkout images reflect realistic
checkout scenarios where each image covers a variant
number of product instances.

• Close to realistic checkout scenario: During the con-
struction of this dataset, we try our best to mimic the
realistic retail checkout scenarios to collect the check-
out images. The products are randomly chosen and
combined; they are freely placed on the checkout back-
ground with random orientations; occlusions and com-
plex clutter are also common in our dataset.

• Hierarchical structure: The hierarchical structure of
product categories is another characteristic of our RPC
dataset. The 200 SKUs can be categorized as 17 meta-
categories which cover diverse appearances, such as
bottle-like, box-like, canister-like, bag-like, as shown
in Figure 6. The SKUs under each meta-category tend
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Table 1. Comparisons with the other related datasets.
Datasets ] categories] images] objects] obj/img
SOIL-47 [15] 47 987 – –
Supermarket [24] 15 2,633 – –
Gorzi-120 [21] 120 11,870 – –
Grocery Products [7] 80 9,030 – –
Feribur Groceries [13] 25 5,021 – –
MVTec D2S [5] 60 21,000 72,447 3.45
Our RPC dataset exemplar 200 51,499 51,499 1
Our RPC dataset checkout 200 30,000 367,973 12.27

Figure 3. Collection equipment for single product images.

to be fine-grained. The hierarchical structure can be ex-
ploited, for example, as auxiliary supervision informa-
tion for advanced training or evaluation, similar to [23].

• Different clutter levels: In this dataset, we split check-
out images into three clutter levels based on the number
of SKUs and product instances in each image, as shown
in Table 2. Such a clutter level annotation enables an
in-depth inspection of the model capacities.

• Weak to strong supervision: As shown in Fig. 5, the
checkout images in our dataset are provided with three
different types of annotations, representing the weak to
strong supervisions: (1) shopping list, which records the
SKU category and count of each product instance in the
checkout image. This is the weakest level of annotation
and can be easily obtained in practice. (2) Point-level
annotation, which provides the central position and the
SKU category of each product in the checkout image.
(3) Bounding boxes, which provide bounding box and
SKU category for each product. This is the most labor-
intensive annotation. The introduction of different types
of annotations further enriches the research directions
that can be derived from this dataset, e.g., research on
weakly supervised detection.

(a) Easy mode.

(b) Medium mode.

(c) Hard mode.
Figure 4. Sampled checkout images of three clutter levels.

Figure 5. Weak to strong supervisions of our RPC dataset: from
shopping list, points, to bounding boxes.

3.2.2 Construction details for the proposed RPC
dataset

In our RPC dataset, we collect 200 retail SKUs. The
collected SKUs can be divided into 17 meta-categories,
i.e., puffed food, dried fruit, dried food,
instant drink, instant noodles, dessert,
drink, alcohol, milk, canned food, chocolate,
gum, candy, seasoner, personal hygiene,
tissue, stationery. Fig. 6 shows some examples for
each of these meta-categories. As can be seen, the dataset
covers products with diverse appearances and shapes such as
bottle-like, box-like, canister-like, bag-like, to name a few.
At the same time, the products under same meta-category
normally tend to be fine-grained. This constitutes one of the
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to be fine-grained. The hierarchical structure can be ex-
ploited, for example, as auxiliary supervision informa-
tion for advanced training or evaluation, similar to [23].

• Different clutter levels: In this dataset, we split check-
out images into three clutter levels based on the number
of SKUs and product instances in each image, as shown
in Table 2. Such a clutter level annotation enables an
in-depth inspection of the model capacities.

• Weak to strong supervision: As shown in Fig. 5, the
checkout images in our dataset are provided with three
different types of annotations, representing the weak to
strong supervisions: (1) shopping list, which records the
SKU category and count of each product instance in the
checkout image. This is the weakest level of annotation
and can be easily obtained in practice. (2) Point-level
annotation, which provides the central position and the
SKU category of each product in the checkout image.
(3) Bounding boxes, which provide bounding box and
SKU category for each product. This is the most labor-
intensive annotation. The introduction of different types
of annotations further enriches the research directions
that can be derived from this dataset, e.g., research on
weakly supervised detection.
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(b) Medium mode.

(c) Hard mode.
Figure 4. Sampled checkout images of three clutter levels.

Figure 5. Weak to strong supervisions of our RPC dataset: from
shopping list, points, to bounding boxes.

3.2.2 Construction details for the proposed RPC
dataset

In our RPC dataset, we collect 200 retail SKUs. The
collected SKUs can be divided into 17 meta-categories,
i.e., puffed food, dried fruit, dried food,
instant drink, instant noodles, dessert,
drink, alcohol, milk, canned food, chocolate,
gum, candy, seasoner, personal hygiene,
tissue, stationery. Fig. 6 shows some examples for
each of these meta-categories. As can be seen, the dataset
covers products with diverse appearances and shapes such as
bottle-like, box-like, canister-like, bag-like, to name a few.
At the same time, the products under same meta-category
normally tend to be fine-grained. This constitutes one of the
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Figure 6. Sampled images of totally 200 retail products belonging to 17 meta categories. For each meta category, we select three products
for presentation.

(a) Examples of bottle-like SKUs. (b) Examples of bag-like SKUs.

Figure 7. Sampled images of single products. Note that, for bag-
like and box-like SKUs, we collect both front and back appearance
images.

challenges for ACO system.
We collect 51,499 single-product images for isolated

SKUs as exemplar images and 30,000 checkout images for
ACO system evaluation. Table 1 shows a detailed compari-
son between our RPC dataset and existing relevant datasets.
We introduce the construction details for these two types of
images in the following parts.

Construction for single-product exemplar images:
Fig. 3 shows the collection environment for capturing the
exemplar images. To capture multi-view characteristics for
each isolated SKU, four cameras are mounted in different
positions to capture images from four different views. One
camera covers the top view, one camera covers the hori-
zontal view, and the other two cameras cover the 45� and
30� views, respectively. The cameras are with automatic
focus and capture images with resolution 2592⇥ 1944. We
randomly choose one instance from each SKU and place it
on a turntable which can rotate 360 degrees. Each camera
takes a photo for this SKU every 9 degrees. Thus, we have
4 ⇥ (360/9) = 160 views for each SKU. In addition, for
box-like and bag-like SKUs, because their top view is nor-
mally different from the bottom view, we repeat the above
collecting procedure twice to collect images for both sides.

Figure 8. Collection environment of checkout images. Red rectan-
gle marks the camera, and the blue quadrangle is the white board
as checkout background.

Some example collections from the four cameras are shown
in Fig. 7. In total, we collect 51,181 exemplar images for
200 isolated SKUs.

Construction for checkout images: To capture the check-
out images, the products are placed on a 80cm⇥80cm
white board as background with a camera (with resolution
1800⇥1800) mounted on top. The collection environment is
shown in Fig. 8. Based on the number of SKUs as well as the
number of product instances for each SKU, we collect check-
out images with three clutter levels: i.e., easy, medium
and hard. Table 2 shows the details of the three splits. Gen-
erally, the more products presented on the board, the more
challenging thing is to accurately recognize the whole set of
products due to problems such as occlusion, varying orienta-
tions and complex clutter and density patterns, as shown in
Fig. 4. To capture a checkout image, we mimic the realistic
checkout scenario. Concretely, we select a random set of
SKUs and a random number of product instances for each of
the selected SKUs guided by specific clutter level (Table 2),
and freely place these products onto the board. To capture
comprehensive product combinations, for each clutter level,
we repeat this process 10,000 times to collect 10,000 images.
Thus in total, we collect 30,000 checkout images.
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Figure 10. Pipeline of our proposed method for the ACO task.

Table 3. Experimental results of the ACO task on our RPC dataset.
Clutter mode Methods cAcc (") ACD (#) mCCD (#) mCIoU (") mAP50 (") mmAP (")

Easy

Single 0.03% 8.12 1.14 2.98% 0.07% 0.01%
Syn 17.86% 2.65 0.38 67.97% 81.31% 56.27%

Render 52.91% 1.00 0.15 86.92% 94.30% 75.27%
Syn+Render 65.89% 0.67 0.10 91.38% 96.25% 78.07%

Medium

Single 0.00% 16.10 1.33 1.93% 0.05% 0.01%
Syn 5.69% 4.42 0.37 67.61% 80.04% 52.16%

Render 28.08% 1.98 0.17 85.22% 93.06% 68.98%
Syn+Render 45.68% 1.21 0.10 90.48% 95.59% 72.12%

Hard

Single 0.00% 20.05 1.18 0.66% 0.05% 0.01%
Syn 2.00% 6.11 0.36 68.49% 80.62% 53.06%

Render 12.46% 3.37 0.20 82.25% 90.97% 66.86%
Syn+Render 29.24% 1.91 0.11 89.75% 94.93% 70.90%

Averaged

Single 0.01% 13.10 1.09 1.20% 0.06% 0.01%
Syn 8.49% 4.38 0.36 68.17% 80.53% 53.17%

Render 30.93% 2.09 0.17 84.25% 92.28% 69.01%
Syn+Render 46.79% 1.26 0.10 90.34% 95.31% 72.45%

problem will add extra difficulty to the problem and
require the development of new approaches.

• Another potential solution to the ACO task is to directly
predict the product list from the checkout image with-
out recursing to the accurate product detection and thus
relieves the burden of training a detector. This solution
essentially models the ACO problem as an object count-
ing problem [1]. However, it is a new type of object
counting problem as it involves objects from multiple
categories, and each object has a limited number of
training samples.

• Using mixed supervision from the checkout images.
Our dataset provides different levels of supervision for
the checkout images. How to leverage those annotations
for better solving the ACO task is still an open problem
and needs more in-depth research.

• As a complementary dataset for other computer vision
tasks. Although our dataset is designed for the ACO
task, it can also act as a dataset for research areas such

as object retrieval, few-shot/weakly-supervised/fully-
supervised object detection, since our annotations also
include the ground truth location/bounding-box of prod-
ucts in the checkout images.

6. Conclusion

In this paper, we proposed a new dataset for the automatic
checkout (ACO) task. This dataset contains 200 product
categories and 81,499 images. It includes single-product
images taken in controlled environment and multi-product
checkout images taken at the checkout counter. Various
annotations are provided for both single-product images and
checkout images. With this dataset, we clearly define the
ACO problem and benchmark the dataset with four detection-
based baselines. We show that there is still substantial room
to improve the ACO performance on this dataset and this
dataset can support various potential research directions.
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Figure 10. Pipeline of our proposed method for the ACO task.

Table 3. Experimental results of the ACO task on our RPC dataset.
Clutter mode Methods cAcc (") ACD (#) mCCD (#) mCIoU (") mAP50 (") mmAP (")

Easy

Single 0.03% 8.12 1.14 2.98% 0.07% 0.01%
Syn 18.49% 2.58 0.37 69.33% 81.51% 56.39%

Render 63.19% 0.72 0.11 90.64% 96.21% 77.65%
Syn+Render 73.17% 0.49 0.07 93.66% 97.34% 79.01%

Medium

Single 0.00% 16.10 1.33 1.93% 0.05% 0.01%
Syn 6.54% 4.33 0.37 68.61% 79.72% 51.75%

Render 43.02% 1.24 0.11 90.64% 95.83% 72.53%
Syn+Render 54.69% 0.90 0.08 92.95% 96.56% 73.24%

Hard

Single 0.00% 20.05 1.18 0.66% 0.05% 0.01%
Syn 2.91% 5.94 0.34 70.25% 80.98% 53.11%

Render 31.01% 1.77 0.10 90.41% 95.18% 71.56%
Syn+Render 42.48% 1.28 0.07 93.06% 96.45% 72.72%

Averaged

Single 0.01% 13.10 1.09 1.20% 0.06% 0.01%
Syn 9.27% 4.27 0.35 69.65% 80.66% 53.08%

Render 45.60% 1.25 0.10 90.58% 95.50% 72.76%
Syn+Render 56.68% 0.89 0.07 93.19% 96.57% 73.83%

problem will add extra difficulty to the problem and
require the development of new approaches.

• Another potential solution to the ACO task is to directly
predict the product list from the checkout image with-
out recursing to the accurate product detection and thus
relieves the burden of training a detector. This solution
essentially models the ACO problem as an object count-
ing problem [1]. However, it is a new type of object
counting problem as it involves objects from multiple
categories, and each object has a limited number of
training samples.

• Using mixed supervision from the checkout images.
Our dataset provides different levels of supervision for
the checkout images. How to leverage those annotations
for better solving the ACO task is still an open problem
and needs more in-depth research.

• As a complementary dataset for other computer vision
tasks. Although our dataset is designed for the ACO
task, it can also act as a dataset for research areas such

as object retrieval, few-shot/weakly-supervised/fully-
supervised object detection, since our annotations also
include the ground truth location/bounding-box of prod-
ucts in the checkout images.

6. Conclusion

In this paper, we proposed a new dataset for the automatic
checkout (ACO) task. This dataset contains 200 product
categories and 81,499 images. It includes single-product
images taken in controlled environment and multi-product
checkout images taken at the checkout counter. Various
annotations are provided for both single-product images and
checkout images. With this dataset, we clearly define the
ACO problem and benchmark the dataset with four detection-
based baselines. We show that there is still substantial room
to improve the ACO performance on this dataset and this
dataset can support various potential research directions.
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Possible research directions on our dataset

 Online learning for the ACO problem

 Multi-category object counting (with limited training samples)

 Using mixed supervision from the checkout images

 Few-shot / weakly-supervised object detection

 And many more …
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v A Deep Attentional Multimodal Similarity Model (DAMSM)

Ø Text encoder (LSTM) extracts word features !", !$, … , !&
Ø Image encoder (CNN) extracts image region features '", '$,…, '(
Ø Attention mechanism: for the i-th word, compute its region-context vector )*,

• +̅*,-is the dot product between features of the i-th word and the j-th image region

Ø The similarity between the image (Q) and the sentence (D)

• .()*, !*) is the cosine similarity between )* and !*

Ø The negative log posterior probability that the images are matched with 
their ground truth text descriptions

• M is the number of training pairs
• 1, 2", 2$	and	27	are hyper-parameters
• The ℒ9:;<;	provides a fine-grained image-text matching loss for training the generator
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Introduction
v Automatically generating images according to natural language 

descriptions is a fundamental problem in many applications, such as 
art generation and computer-aided design.

v Current text-to-image GAN models condition only on the global 
sentence vector which lacks important fine-grained information at 
the word level and prevents the generation of high quality images.

Our AttnGAN
v A novel attentional generative network

Ø Progressively generate low-to-high resolution images with = generators

Ø Attention model >?@@A	
o For each region feature of previous generated image, query its most relevant words.
o Synthesizes fine-grained details at different sub-regions of the image by paying 

attentions to the relevant words in the natural language description. 

Ø The final objective function
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Results
v The DAMSM loss is important
v Stacking more attention models helps
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v Compare with state-of-the-art

v Generalize the proposed attention mechanisms to DCGAN framework
Ø Vanilla  DCGAN on CUB:     2.47 inception score      3.69% R-precision 
Ø Our AttnDCGAN on CUB:    4.12 inception score      38.45% R-precision

Dataset GAN-INT-CLS GAWWN StackGAN StackGAN-v2 PPGN Our AttnGAN

CUB 2.88 ± .04 3.62 ± .07 3.70 ± .04 3.82 ± .06 \ 4.36 ± .03
COCO 7.88 ± .07 \ 8.45 ± .03 \ 9.58 ± .21 25.89 ± .47

ℒ = C ℒD:(
*

EF"

*GH

+ 	1ℒ9:;<;

.(J, K) = log C exp 2$. )*, !*

&F"

*GH

"
RS

ℒ9:;<;

)* = 	C T-'-, 	where		T- = 	
exp	(2"+̅*,-)

∑ exp	(2"+̅*,Y)
(F"
YGH

	

(F"

-GH

ℒ9:;<; = 	−Clog[(K*|J*) , where		[(K*|J*) = 	
exp	 27. J*, K*

∑ exp	 27. J*, K-
;
-G"

	

;

*G"

v A Deep Attentional Multimodal Similarity Model (DAMSM)

Ø Text encoder (LSTM) extracts word features !", !$, … , !&
Ø Image encoder (CNN) extracts image region features '", '$,…, '(
Ø Attention mechanism: for the i-th word, compute its region-context vector )*,

• +̅*,-is the dot product between features of the i-th word and the j-th image region

Ø The similarity between the image (Q) and the sentence (D)

• .()*, !*) is the cosine similarity between )* and !*

Ø The negative log posterior probability that the images are matched with 
their ground truth text descriptions

• M is the number of training pairs
• 1, 2", 2$	and	27	are hyper-parameters
• The ℒ9:;<;	provides a fine-grained image-text matching loss for training the generator

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
Tao Xu1, Pengchuan Zhang2, Qiuyuan Huang2, Han Zhang3, Zhe Gan2, Xiaolei Huang1, Xiaodong He4

1Lehigh University 2Microsoft Research 3Rutgers University 4JD AI ResearchSource code

Introduction
v Automatically generating images according to natural language 

descriptions is a fundamental problem in many applications, such as 
art generation and computer-aided design.

v Current text-to-image GAN models condition only on the global 
sentence vector which lacks important fine-grained information at 
the word level and prevents the generation of high quality images.

Our AttnGAN
v A novel attentional generative network

Ø Progressively generate low-to-high resolution images with = generators

Ø Attention model >?@@A	
o For each region feature of previous generated image, query its most relevant words.
o Synthesizes fine-grained details at different sub-regions of the image by paying 

attentions to the relevant words in the natural language description. 

Ø The final objective function

This bird is red with
white and has a
very short beak

Text
Encoder

Image
Encoder

Local image features

Word features

Results
v The DAMSM loss is important
v Stacking more attention models helps

v Attention maps on CUB (left) and COCO (right)

v Novel images on CUB (left) and COCO (right)

v Compare with state-of-the-art

v Generalize the proposed attention mechanisms to DCGAN framework
Ø Vanilla  DCGAN on CUB:     2.47 inception score      3.69% R-precision 
Ø Our AttnDCGAN on CUB:    4.12 inception score      38.45% R-precision

Dataset GAN-INT-CLS GAWWN StackGAN StackGAN-v2 PPGN Our AttnGAN

CUB 2.88 ± .04 3.62 ± .07 3.70 ± .04 3.82 ± .06 \ 4.36 ± .03
COCO 7.88 ± .07 \ 8.45 ± .03 \ 9.58 ± .21 25.89 ± .47

ℒ = C ℒD:(
*

EF"

*GH

+ 	1ℒ9:;<;

.(J, K) = log C exp 2$. )*, !*

&F"

*GH

"
RS

ℒ9:;<;

)* = 	C T-'-, 	where		T- = 	
exp	(2"+̅*,-)

∑ exp	(2"+̅*,Y)
(F"
YGH

	

(F"

-GH

ℒ9:;<; = 	−Clog[(K*|J*) , where		[(K*|J*) = 	
exp	 27. J*, K*

∑ exp	 27. J*, K-
;
-G"

	

;

*G"

Fine-grained images with languages

http://www.weixiushen.com/

http://www.weixiushen.com/


Fine-grained images with languages

New developments of fine-grained (con’t)
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Figure 2. Overview of our CVL approach. The two-stream model conducts on the original images and their object localizations. One learns
the deep representations directly from the vision information. The other learns the salient visual aspects for distinguishing sub-categories
via jointly modeling vision and language. The classification results of the two streams are merged in later phase to combine the advantages
of vision and language.

tegrated to get comprehensive results in many real-world
applications. How to learn multi-modal representation for
cross-modal data is a fundamental research problem. A tra-
ditional representation method is the canonical correlation
analysis (CCA) [20], which learns a subspace to maximize
the correlation among data of different media types, and is
widely used for modeling multi-modal data [21, 22, 23].
Zhai et al. [24] propose to learn projection functions by the
metric learning, and this method is further improved as Joint
Representation Learning (JRL) [25] by adding other infor-
mation such as semantic categories and semi-supervised in-
formation. Inspired by the progress of deep neural net-
works, some works have been focused on deep multi-modal
representation learning. Ngiam et al. [26] propose a multi-
modal deep learning (MDL) method to combine the audio
and video into an autoencoder, which improves the speech
signal classification for noisy inputs as well as learns a
shared representation across modalities. Recently, a surge
of progress has been made in image and video captioning.
LSTMs [27] are widely used in modeling captions at word
level. Besides LSTMs, character-based convolutional net-
works [28] have been used for language modeling. In this
paper, we apply the extension of Convolutional and Recur-
rent Networks (CNN-RNN) to learn a visual semantic em-

bedding. In this paper, we bring the multi-modal representa-
tion learning into fine-grained image classification to boost
the performance, and jointly modeling vision and language.

3. Our CVL Approach

Our method is based on a very simple intuition: natu-
ral language descriptions could point out the discrimina-
tive parts or characteristics from other sub-categories, and
are complementary with vision information. Therefore, we
propose a two-stream model combining vision and language
for learning latent semantic representations, which takes the
advantages of vision and language jointly, as shown in Fig-
ure. 2. Since the object is crucial for fine-grained image
classification, we take the original images and their object
localizations as the inputs of the two-stream model.

3.1. Object localization

In this paper, we apply an automatic object localization
method based on saliency extraction and co-segmentation
proposed in TSC [4], which allows to localize the object in
a weakly-supervised manner that means neither object nor
part annotations are used. Saliency extraction is to localize
the object preliminarily with the saliency map generated by

[X. He and Y. Peng, CVPR 2017] http://www.weixiushen.com/
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Abstract

Humans are capable of learning a new fine-grained con-

cept with very little supervision, e.g., few exemplary images

for a species of bird, yet our best deep learning systems need

hundreds or thousands of labeled examples. In this paper,

we try to reduce this gap by studying the fine-grained im-

age recognition problem in a challenging few-shot learning

setting, termed few-shot fine-grained recognition (FSFG).

The task of FSFG requires the learning systems to build clas-

sifiers for novel fine-grained categories from few examples

(only one or less than five). To solve this problem, we pro-

pose an end-to-end trainable deep network which is inspired

by the state-of-the-art fine-grained recognition model and is

tailored for the FSFG task.

Specifically, our network consists of a bilinear feature

learning module and a classifier mapping module: while

the former encodes the discriminative information of an

exemplar image into a feature vector, the latter maps the

intermediate feature into the decision boundary of the novel

category. The key novelty of our model is a “piecewise

mappings” function in the classifier mapping module, which

generates the decision boundary via learning a set of more

attainable sub-classifiers in a more parameter-economic

way. We learn the exemplar-to-classifier mapping based on

an auxiliary dataset in a meta-learning fashion, which is

expected to be able to generalize to novel categories. By

conducting comprehensive experiments on three fine-grained

datasets, we demonstrate that the proposed method achieves

superior performance over the competing baselines.

1. Introduction
Fine-grained image recognition, as an important com-

puter vision problem, has attracted tremendous attention
and observed rapid performance boost thanks to the sophis-
ticated deep network structures. However, the large-scale
fine-grained data volume required to train such classification
algorithms limits the ranges where they can be successfully

Figure 1: Illustration of the few-shot fine-grained image
recognition (FSFG) task. The aim is to learn the classifier
for a fine-grained category, bird species in this example,
from few exemplars. We train the exemplar-to-classifier
mapping based on an auxiliary dataset B and test the FSFG
performance on another dataset N . There are no category
overlaps between these two sets.

applied to, e.g., very sparse training samples can be collected
for some rare bird species. Humans, in contrast, are capa-
ble of learning a new fine-grained concept with very little
supervision. To mimic this human ability, in this work, we
study the fine-grained image recognition in a more practical
and challenging few-shot setting, that is, we aim to learn
the classifiers of novel fine-grained categories from very few
labeled training examples (a.k.a. exemplars, usually 1 or 5).

Learning a classifier for a fine-grained category identified
by few exemplars is a challenging problem, as satisfactory
classification performance can be expected only when the
learned classifiers can capture the subtle differences between

1

Few-shot fine-grained (FSFG) image recognition

New developments of fine-grained (con’t)

[Wei et al., IEEE TIP, 2019] http://www.weixiushen.com/
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Abstract

Humans are capable of learning a new fine-grained con-

cept with very little supervision, e.g., few exemplary images

for a species of bird, yet our best deep learning systems need

hundreds or thousands of labeled examples. In this paper,

we try to reduce this gap by studying the fine-grained im-

age recognition problem in a challenging few-shot learning

setting, termed few-shot fine-grained recognition (FSFG).

The task of FSFG requires the learning systems to build clas-

sifiers for novel fine-grained categories from few examples

(only one or less than five). To solve this problem, we pro-

pose an end-to-end trainable deep network which is inspired

by the state-of-the-art fine-grained recognition model and is

tailored for the FSFG task.

Specifically, our network consists of a bilinear feature

learning module and a classifier mapping module: while

the former encodes the discriminative information of an

exemplar image into a feature vector, the latter maps the

intermediate feature into the decision boundary of the novel

category. The key novelty of our model is a “piecewise

mappings” function in the classifier mapping module, which

generates the decision boundary via learning a set of more

attainable sub-classifiers in a more parameter-economic

way. We learn the exemplar-to-classifier mapping based on

an auxiliary dataset in a meta-learning fashion, which is

expected to be able to generalize to novel categories. By

conducting comprehensive experiments on three fine-grained

datasets, we demonstrate that the proposed method achieves

superior performance over the competing baselines.

1. Introduction
Fine-grained image recognition, as an important com-

puter vision problem, has attracted tremendous attention
and observed rapid performance boost thanks to the sophis-
ticated deep network structures. However, the large-scale
fine-grained data volume required to train such classification
algorithms limits the ranges where they can be successfully

Figure 1: Illustration of the few-shot fine-grained image
recognition (FSFG) task. The aim is to learn the classifier
for a fine-grained category, bird species in this example,
from few exemplars. We train the exemplar-to-classifier
mapping based on an auxiliary dataset B and test the FSFG
performance on another dataset N . There are no category
overlaps between these two sets.

applied to, e.g., very sparse training samples can be collected
for some rare bird species. Humans, in contrast, are capa-
ble of learning a new fine-grained concept with very little
supervision. To mimic this human ability, in this work, we
study the fine-grained image recognition in a more practical
and challenging few-shot setting, that is, we aim to learn
the classifiers of novel fine-grained categories from very few
labeled training examples (a.k.a. exemplars, usually 1 or 5).

Learning a classifier for a fine-grained category identified
by few exemplars is a challenging problem, as satisfactory
classification performance can be expected only when the
learned classifiers can capture the subtle differences between
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subtle image cues which makes it considerably more chal-
lenging. We demonstrate that the proposed model, especially
our piecewise mappings component, can cater to the desire
of capturing the subtle differences in a fine-grained scenario
from limited training data, even one-shot.

3. Learning few-shot fine-grained learners
In this section, we firstly present our learning strategy for

FSFG and introduce the relevant notations. Then, a detailed
elaboration of various aspects of our method will be followed
in the subsequent sections.

3.1. Learning strategy and notations
Our work is built upon the framework of meta-learning

which treats the classifier generation process as a mapping
function from the few labeled training samples of a cate-
gory, called “exemplars” hereafter, to their corresponding
category classifier. Fig. 2 shows the key idea of this learning
scheme. This exemplar-to-classifier mapping is learned on
an auxiliary training set B. It contains N labeled training
images B = {(I1, y1), (I2, y2), . . . , (IN , yN )}, where Ii is
an example image and yi 2 {1, 2, . . . , CB} is its correspond-
ing label. Once the mapping function is learned, it will be
applied on another testing set N to evaluate its performance,
where N contains images of novel categories that do not
appear in B.

To train the mapping function, we randomly sample a
set of “meta-training sets” from B. Each meta-training set
(corresponding to a training episode) contains CE < CB ran-
domly chosen categories and a few images associated with
them. A meta-training set is composed of an “exemplar set”
E and a “query set” Q to mimic the scenario at the testing
stage. Specifically, E contains Ne (e.g., 1 or 5) exemplar
images per category. The query set Q is coupled with E (has
the same categories), but has no overlapped images. Each
category of Q contains Nq query images. During training,
E will be fed into the to-be-learned mapping function M to
generate the category classifiers FE :

E M�! FE . (1)

Then, FE are subsequently applied to Q for evaluating the
classification loss. The training objective then amounts to
learning the mapping function by minimizing the classifica-
tion loss. This process is formally written as follows:

min
�

E
{E,Q}⇠B

{L (FE �Q)} , (2)

where � denotes the model parameters of the mapping func-
tion M (from E to FE ), and L is the loss function. FE �Q
denotes applying the category classifiers FE generated by
the exemplar set E on the query set Q.

Figure 2: Key idea of the proposed FSFG model. In each
episode, we sample an exemplar set E from B, which is
composed of a subset of categories (three categories in this
example) and each category contains few exemplars (the
images with red border). We wish to learn a mapping M that
can map these exemplars into their corresponding category
classifiers (the dashed lines). The mapping parameters are
learned so that these classifiers can correctly distinguish the
query images (the images with yellow border).

3.2. Model

We implement the above exemplar-to-classifier mapping
by adopting a trainable neural network. Fig. 3 shows the
overall architecture of the network. As we can see, the net-
work is composed of two modules: a representation learning
module and a classifier mapping module. While the former
adopts a bilinear CNN structure to encode the discriminative
information of an exemplar image into a high-dimensional
feature vector, the latter, as the key part of the network, maps
the intermediate image representation into a category clas-
sifier. In the next two sub-sections, we elaborate these two
modules in more details.

3.2.1 Representation learning

We employ a bilinear CNN (BCNN) structure [17] to learn
the image representation considering its state-of-the-art per-
formance in fine-grained image recognition. BCNN consists
of two feature extractors whose outputs are multiplied using
outer product at each location of the image and pooled to
obtain an image representation. Concretely, given two con-
volutional networks (A and B) as two streams of BCNN, we
assume their outputs are re-organized into fA(I) 2 RnA⇥L

and fB(I) 2 RnB⇥L, where nA, nB denotes the dimen-
sionality of the outputs and L denotes the spatial loca-
tions. Then, at location l, the bilinear representation will be
bl 2 RnA⇥nB ,

bl = fA(l, I)fB(l, I)| . (3)
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subtle image cues which makes it considerably more chal-
lenging. We demonstrate that the proposed model, especially
our piecewise mappings component, can cater to the desire
of capturing the subtle differences in a fine-grained scenario
from limited training data, even one-shot.

3. Learning few-shot fine-grained learners
In this section, we firstly present our learning strategy for

FSFG and introduce the relevant notations. Then, a detailed
elaboration of various aspects of our method will be followed
in the subsequent sections.

3.1. Learning strategy and notations
Our work is built upon the framework of meta-learning

which treats the classifier generation process as a mapping
function from the few labeled training samples of a cate-
gory, called “exemplars” hereafter, to their corresponding
category classifier. Fig. 2 shows the key idea of this learning
scheme. This exemplar-to-classifier mapping is learned on
an auxiliary training set B. It contains N labeled training
images B = {(I1, y1), (I2, y2), . . . , (IN , yN )}, where Ii is
an example image and yi 2 {1, 2, . . . , CB} is its correspond-
ing label. Once the mapping function is learned, it will be
applied on another testing set N to evaluate its performance,
where N contains images of novel categories that do not
appear in B.

To train the mapping function, we randomly sample a
set of “meta-training sets” from B. Each meta-training set
(corresponding to a training episode) contains CE < CB ran-
domly chosen categories and a few images associated with
them. A meta-training set is composed of an “exemplar set”
E and a “query set” Q to mimic the scenario at the testing
stage. Specifically, E contains Ne (e.g., 1 or 5) exemplar
images per category. The query set Q is coupled with E (has
the same categories), but has no overlapped images. Each
category of Q contains Nq query images. During training,
E will be fed into the to-be-learned mapping function M to
generate the category classifiers FE :

E M�! FE . (1)

Then, FE are subsequently applied to Q for evaluating the
classification loss. The training objective then amounts to
learning the mapping function by minimizing the classifica-
tion loss. This process is formally written as follows:

min
�

E
{E,Q}⇠B

{L (FE �Q)} , (2)

where � denotes the model parameters of the mapping func-
tion M (from E to FE ), and L is the loss function. FE �Q
denotes applying the category classifiers FE generated by
the exemplar set E on the query set Q.

Figure 2: Key idea of the proposed FSFG model. In each
episode, we sample an exemplar set E from B, which is
composed of a subset of categories (three categories in this
example) and each category contains few exemplars (the
images with red border). We wish to learn a mapping M that
can map these exemplars into their corresponding category
classifiers (the dashed lines). The mapping parameters are
learned so that these classifiers can correctly distinguish the
query images (the images with yellow border).

3.2. Model

We implement the above exemplar-to-classifier mapping
by adopting a trainable neural network. Fig. 3 shows the
overall architecture of the network. As we can see, the net-
work is composed of two modules: a representation learning
module and a classifier mapping module. While the former
adopts a bilinear CNN structure to encode the discriminative
information of an exemplar image into a high-dimensional
feature vector, the latter, as the key part of the network, maps
the intermediate image representation into a category clas-
sifier. In the next two sub-sections, we elaborate these two
modules in more details.

3.2.1 Representation learning

We employ a bilinear CNN (BCNN) structure [17] to learn
the image representation considering its state-of-the-art per-
formance in fine-grained image recognition. BCNN consists
of two feature extractors whose outputs are multiplied using
outer product at each location of the image and pooled to
obtain an image representation. Concretely, given two con-
volutional networks (A and B) as two streams of BCNN, we
assume their outputs are re-organized into fA(I) 2 RnA⇥L

and fB(I) 2 RnB⇥L, where nA, nB denotes the dimen-
sionality of the outputs and L denotes the spatial loca-
tions. Then, at location l, the bilinear representation will be
bl 2 RnA⇥nB ,

bl = fA(l, I)fB(l, I)| . (3)
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subtle image cues which makes it considerably more chal-
lenging. We demonstrate that the proposed model, especially
our piecewise mappings component, can cater to the desire
of capturing the subtle differences in a fine-grained scenario
from limited training data, even one-shot.

3. Learning few-shot fine-grained learners
In this section, we firstly present our learning strategy for

FSFG and introduce the relevant notations. Then, a detailed
elaboration of various aspects of our method will be followed
in the subsequent sections.

3.1. Learning strategy and notations
Our work is built upon the framework of meta-learning

which treats the classifier generation process as a mapping
function from the few labeled training samples of a cate-
gory, called “exemplars” hereafter, to their corresponding
category classifier. Fig. 2 shows the key idea of this learning
scheme. This exemplar-to-classifier mapping is learned on
an auxiliary training set B. It contains N labeled training
images B = {(I1, y1), (I2, y2), . . . , (IN , yN )}, where Ii is
an example image and yi 2 {1, 2, . . . , CB} is its correspond-
ing label. Once the mapping function is learned, it will be
applied on another testing set N to evaluate its performance,
where N contains images of novel categories that do not
appear in B.

To train the mapping function, we randomly sample a
set of “meta-training sets” from B. Each meta-training set
(corresponding to a training episode) contains CE < CB ran-
domly chosen categories and a few images associated with
them. A meta-training set is composed of an “exemplar set”
E and a “query set” Q to mimic the scenario at the testing
stage. Specifically, E contains Ne (e.g., 1 or 5) exemplar
images per category. The query set Q is coupled with E (has
the same categories), but has no overlapped images. Each
category of Q contains Nq query images. During training,
E will be fed into the to-be-learned mapping function M to
generate the category classifiers FE :

E M�! FE . (1)

Then, FE are subsequently applied to Q for evaluating the
classification loss. The training objective then amounts to
learning the mapping function by minimizing the classifica-
tion loss. This process is formally written as follows:

min
�

E
{E,Q}⇠B

{L (FE �Q)} , (2)

where � denotes the model parameters of the mapping func-
tion M (from E to FE ), and L is the loss function. FE �Q
denotes applying the category classifiers FE generated by
the exemplar set E on the query set Q.

Figure 2: Key idea of the proposed FSFG model. In each
episode, we sample an exemplar set E from B, which is
composed of a subset of categories (three categories in this
example) and each category contains few exemplars (the
images with red border). We wish to learn a mapping M that
can map these exemplars into their corresponding category
classifiers (the dashed lines). The mapping parameters are
learned so that these classifiers can correctly distinguish the
query images (the images with yellow border).

3.2. Model

We implement the above exemplar-to-classifier mapping
by adopting a trainable neural network. Fig. 3 shows the
overall architecture of the network. As we can see, the net-
work is composed of two modules: a representation learning
module and a classifier mapping module. While the former
adopts a bilinear CNN structure to encode the discriminative
information of an exemplar image into a high-dimensional
feature vector, the latter, as the key part of the network, maps
the intermediate image representation into a category clas-
sifier. In the next two sub-sections, we elaborate these two
modules in more details.

3.2.1 Representation learning

We employ a bilinear CNN (BCNN) structure [17] to learn
the image representation considering its state-of-the-art per-
formance in fine-grained image recognition. BCNN consists
of two feature extractors whose outputs are multiplied using
outer product at each location of the image and pooled to
obtain an image representation. Concretely, given two con-
volutional networks (A and B) as two streams of BCNN, we
assume their outputs are re-organized into fA(I) 2 RnA⇥L

and fB(I) 2 RnB⇥L, where nA, nB denotes the dimen-
sionality of the outputs and L denotes the spatial loca-
tions. Then, at location l, the bilinear representation will be
bl 2 RnA⇥nB ,

bl = fA(l, I)fB(l, I)| . (3)
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Figure 3: Overview structure of our proposed FSFG model. On the left, it is the first component (the bilinear pooling module)
for representation learning. On the right, the second component (the classifier mapping module) mapps the intermediate image
features into the category classifiers.

The vectorized versions of {bl} will be pooled over the
entire image to derive the image representation x 2 RD⇥1

(for interpretation simplicity we let D = nA ⇥ nB), that is,

x(I) =
LX

l=1

vec(bl) . (4)

With the outer product computation, bilinear structure mod-
ulates one feature stream with another. Thus, the BCNN
feature x can be viewed as a set of nB sub-vectors xt:

x =
⇥
x1;x2; . . . ;xt; . . . ;xnB

⇤
, 8t : xt 2 RnA⇥1 , (5)

where xt is the modulated feature of fA by the t-th feature of
fB . This is similar to the multiplicative feature interactions
in attention mechanisms [17]. From the observation that
each modulated feature map tends to focus on an implicit
“part” of an object, and thus, xt can be viewed as the feature
description for that “part”. In our implementation, we train
the bilinear CNN by performing the same procedure in [17]
and use it as the image representation extractor.

To represent a set of Ne exemplar images belonging to
category k, we simply compute the mean image representa-
tion as the category-level representation by:

Xk =
1

Ne

NeX

i=1

xi , (6)

where {xi} are samples with yi = k.

3.2.2 Classifier mapping

Now that the information of each category identified by few
exemplars has been encoded into a bilinear feature vector,

the task of the classifier mapping module is to map these
intermediate category-level representations into their corre-
sponding category classifiers. Mathematically, this module
computes a D-dimensional classifier Fk 2 RD for each
category through a mapping M : RD ! RD.

A straightforward solution to realize this mapping is via
a global mapping, either linear or nonlinear. For example, a
linear mapping can be:

Fk = WgXk + bg , (7)

where Wg 2 RD⇥D and bg 2 RD denote the parameters of
the global mapping. However, this mapping strategy suffers
from two drawbacks. First, as the feature Xk is supposed
to encode the category-level information, the distribution of
which can be highly complex. This poses a great challenge
for the global mapping to find a decision boundary in such
a complex feature space. Second, since the bilinear feature
tends to be high dimensional, this mapping may result in
parameter explosion, which will make the network training
hard or infeasible.

To mitigate these problems, we propose a novel “piece-
wise mappings” strategy, which exploits the structure of the
bilinear features. As analyzed in Sec. 3.2.1, the bilinear
feature Xk can be viewed as a set of sub-vectors Xt

k with
each sub-vector describes an implicit “part” of the object.
Intuitively, we can test if an object falls into the category
described in the exemplars by checking whether each “part”
of it is compatible with the exemplars. This motivates us to
apply a piecewise mapping to first map each sub-vector Xt

k
into its corresponding sub-classifier F t

k, and then combine
these sub-classifiers together to generate the global category
classifier. Fig. 3 shows this mapping with more details.
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