

Fine-Grained Image Analysis

ICME Tutorial

Xiu-Shen WEI

Megvii Research Nanjing, Megvii Inc.

Jul. 8, 2019 Shanghai, China

Outline

- Background about CV, DL, and image analysis
- Introduction of fine-grained image analysis
- Fine-grained image retrieval
- **Fine-grained** image recognition
- Other computer vision tasks related to fine-grained image analysis
- Mew developments of fine-grained image analysis Part 2

Part I

Part I

Mackground

- \mathbf{V} A brief introduction of computer vision
- ☑ Traditional image recognition and retrieval
- Deep learning and convolutional neural networks

Introduction

- **M** Fine-grained images vs. generic images
- ☑ Various real-world applications of fine-grained images
- Challenges of fine-grained image analysis
- Fine-grained benchmark datasets
- **I** Fine-grained image retrieval
 - Fine-grained image retrieval based on hand-crafted features
 - Fine-grained image retrieval based on deep learning

What is computer vision?

What we see

What a computer sees

Why study computer vision?

- □ CV is useful
- \Box CV is interesting
- CV is difficult
- Ω...

Finger reader

"man in black shirt is playing guitar."

Image captioning

Crowds and occlusions

Successes of computer vision to date

Face recognition

Biometric systems

Self-driving cars

Top-tier CV conferences/journals and prizes

Traditional image recognition and image retrieval

Computer vision features

Deep learning and convolutional neural networks

"Rome was not built in one day!"

Figures are courtesy of L. Fei-Fei.

Deep learning and convolutional neural networks

第2次卷积操作 卷积后结果(卷积特征) Unit processing of CNNs

CNN architecture

Introduction

Fine-grained images vs. generic images

Traditional image recognition (Coarse-grained)

Fine-grained image recognition

Various real-world applications

Can you detect and classify species of fish?

Nearly half of the world depends on seafood for their main source of protein. In the Western and Central Pacific, where 60% of the world's tuna is caught, illegal, unreported, and unregulated fishing practices are threatening marine ecosystems, global seafood supplies and local livelihoods. The Nature Conservancy is working with local, regional and global partners to preserve this fishery for the future.

ALB: Albacore tuna (Thunnus alalunga)

BET: Bigeye tuna (Thunnus obesus)

LAG: Opah, Moonfish (Lampris guttatus)

SHARK: Various: Silky, Shortfin Mako

YFT: Yellowfin tuna (Thunnus albacares)

Various real-world applications

Various real-world applications

Results 1. Megvii Research Nanjing a. Error = 0.10267 2. Alibaba Machine Intelligence Technology Lab a. Error = 0.11315 3. General Dynamics Mission Systems a. Error = 0.12678

FGVC6	iNat2019
This certifica	ate is awarded to
Bo-Yan Zhou, Bo-Rui Z Zhao-Min Chen, Ren- Megvii Re	hao, Quan Cui, Yan-Ping Xie, Jie Song, and Xiu-Shen Wei search Nanjing
winners of the iN classification challeng the FGVC work	laturalist 2019 image ge held in conjunction with shop at CVPR 2019.

Various real-world applications

Herbarium Challenge 2019

Kiat Chuan Tan¹, Yulong Liu¹, Barbara Ambrose², Melissa Tulig², Serge Belongie^{1,3}

¹Google Research, ²New York Botanical Garden, ³Cornell Tech

Herbarium Challenge 2019 (top

- #1 Megvii Research Nanjing (89.8%)
 - Boyan Zhou, Quan Cui, Borui Zhao, Yanping Xie, Renjie Song, Xiu-Shen Wei
- #2 PEAK (89.1%)
 - Chunqiao Xu, Shao Zeng, Qiule Sun, Shuyu Ge, Peihua Li (Dalian University of Technology)
- #3 Miroslav Valan (89.0%)
 - Swedish Museum of Natural History
- #4 Hugo Touvron (88.9%)
 - Hugo Touvron and Andrea Vedaldi (Facebook Al Research)

Various real-world applications

Various real-world applications

Various real-world applications

Challenge of fine-grained image analysis

Heermann Gull

nter-class varianc

Slaty-backed Gull

The key of fine-grained image analysis

Fine-grained benchmark datasets

CUB200-2011

□ 11,788 images, 200 fine-grained classes

[C.Wah et al., CNS-TR-2011-001, 2011]

Fine-grained benchmark datasets

Chihuahua

Maltese Dog

Blenheim Spaniel

Toy Terrier

Afghan Hound

Rhodesian Ridgeback

Basset Hound

Stanford Dogs

- □ 20,580 images
- I 20 fine-grained classes

[A. Khosla et al., CVPR Workshop 2011]

Fine-grained benchmark datasets

Oxford Flowers

□ 8,189 images, 102 fine-grained classes

[M.-E. Nilsback and A. Zisserman, CVGIP 2008]

Fine-grained benchmark datasets

Aircrafts

- □ 10,200 images
- I 100 fine-grained classes

[S. Maji et al., arXiv: 1306.5151, 2013]

Fine-grained benchmark datasets

Stanford Cars

□ 16,185 images, 196 fine-grained classes

Fine-grained image analysis is hot ...

- Many papers published on top-tier conf./journals
 CVPR, ICCV, ECCV, IJCAI, etc.
 TPAMI, IJCV, TIP, etc.
- Many frequently held workshops
 Workshop on Fine-Grained Visual Categorization
 ...
- Any academic challenges about fine-grained tasks
 - ☆ The Nature Conservancy Fisheries Monitoring
 - ☆ iFood Classification Challenge
 - ☆ iNature Classification Challenge
 - ☆...

Fine-grained image retrieval

Deep learning for image retrieval

FGIR vs. General-purposed IR

(a) Fine-grained image retrieval. Two examples ("Mallard" and "Rolls-Royce Phantom Sedan 2012") from the *CUB200-2011* [10] and *Cars* [11] datasets, respectively.

(b) General image retrieval. Two examples from the *Oxford Building* [12] dataset.

FGIR based on hand-crafted features

[Xie et al., IEEE TMM 2015]

Selective Convolutional Descriptor Aggregation (SCDA)

Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

Notations

(a) Input image

(b) Convolutional activation tensor

 $h \times w \times d$

Feature maps: 2-D feature maps $S = \{S_n\}$ (n = 1, ..., d)

Descriptors:

$$X = \left\{ \boldsymbol{x}_{(i,j)} \right\}$$

[Wei et al., IEEE TIP 2017]

The 108-th channel

The 481-th channel

. . .

The 468-th channel

The 245-th channel

The 375-th channel

The 6-th channel

The 284–th channel

The 163-th channel

(b) Visualization of the mask map \widetilde{M}

Fine-grained image retrieval (con't)

Obtaining the activation map by summarizing feature maps

[Wei et al., IEEE TIP 2017]

Visualization of the mask map M

(b) Visualization of the mask map \widetilde{M}

Selecting useful deep convolutional descriptors

Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Qualitative evaluation

[Wei et al., IEEE TIP 2017]

Aggregating convolutional descriptors

- VLAD [14] uses k-means to find a codebook of K centroids $\{c_1, \ldots, c_K\}$ and maps $\boldsymbol{x}_{(i,j)}$ into a single vector $\boldsymbol{v}_{(i,j)} = \begin{bmatrix} \boldsymbol{0} & \ldots & \boldsymbol{0} & \boldsymbol{x}_{(i,j)} - \boldsymbol{c}_k & \ldots & \boldsymbol{0} \end{bmatrix} \in \mathcal{R}^{K \times d}$, where \boldsymbol{c}_k is the closest centroid to $\boldsymbol{x}_{(i,j)}$. The final representation is $\sum_{i,j} \boldsymbol{v}_{(i,j)}$.
- Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment (i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also includes second-order statistics.²
- Pooling approaches. We also try two traditional pooling approaches, i.e., max-pooling and average-pooling, to aggregate the deep descriptors.

Comparing difference encoding or pooling methods

Approach	Dimension	CUB200-2011		Stanford Dogs	
		top1	top5	top1	top5
VLAD	1,024	55.92%	62.51%	69.28%	74.43%
Fisher Vector	2,048	52.04%	59.19%	68.37%	73.74%
avgPool	512	56.42%	63.14%	73.76%	78.47%
maxPool	512	58.35%	64.18%	70.37%	75.59%
avg&maxPool	1,024	59.72%	65.79%	74.86%	79.24%

SCDA

Multiple layer ensemble

(d) \widetilde{M} of Relu5_2

Figure 6. The mask map and its corresponding largest connected component of different CNN layers. (The figure is best viewed in color.)

$$\text{SCDA}^+ \leftarrow \left[\text{SCDA}_{\text{pool}_5}, \ \alpha \times \text{SCDA}_{\text{relu}_{5,2}}\right]$$

 $\mathrm{SCDA_flip}^+$

[Wei et al., IEEE TIP 2017]

Quality demonstration of the SCDA feature

[Wei et al., IEEE TIP 2017]

2011: Zhang a missiples dentation a construction of the second state of the second sta

DDT tren norther the second of the second of

Cited bellent Cited

A PART AND A PART

What we need is a mapping function ...

1613, Concerticion, Gathalla Lia. Shenin Coacia a I Cicta Calibn add sor Dicaes ing avolution has a avolution has a avolution has a segmentation has a **Concretely**, for an image distribution that every image contains the object of through the depth direction and hence is unable to handle noisy images. becomes a $h \times w$ 2-D mat tionally, co-localization is also related to weakly suap in SCDA he ast conta-I object localization (WSOL) Zhang et al., map is regarded as the thi al., 2015; Wang et al., 2014; Siva and Xiang, the activation response in t key difference between them is WSOLdrequires map is larger than \bar{a} , it (in y-labeled negative images whereas: Band manarian very state of the co-localization b sful predictions and one failure case in these images, th CNN prectaveile est heneride is druth bounding bo zon the successful or THE SCHOOL BE TAPPEST the same as the rad prodictionse) (Best viewed inight and zeo method. CorLoc is defined as the percentage of images cor-52.9 34.07.6 71.667.3 14.570.3 80.8 68.2 71.8 30.3 Our DDT Deep Descriptor Transforming EILO CENTRE pap

The whole pipeline of DDT

[Wei et al., IJCAI 2017]

DDT vs. SCDA

DDT vs. SCDA

Empirical results on ImageNet-Subset (disjoint with ImageNet)

(a) Chipmunk

(b) Rhino

(c) Stoat

(d) Racoon

(e) Rake

(f) Wheelchair

[Wei et al., IJCAI 2017]

Extension to video co-localization

[Wei et al., IJCAI 2017]

I Fine-grained image recognition

- **M** Fine-grained image recognition with powerful representation learning
- *I* Fine-grained image recognition with part-based approaches

Other computer vision tasks related to fine-grained image analysis

- Person / Vehicle re-identification
- Clothes retrieval
- **M** Product recognition

Move developments of fine-grained image analysis

- **M** Fine-grained images with languages
- **M** Few-shot fine-grained image recognition

Fine-grained image recognition

Fine-grained image recognition with end-to-end feature encoding

Spatial Transformer Networks

Model	
Cimpoi '15 [4]	66.7
Zhang '14 [30]	74.9
Branson '14 [2]	75.7
Lin '15 [20]	80.9
Simon '15 [24]	81.0
CNN (ours) 224px	82.3
2×ST-CNN 224px	83.1
2×ST-CNN 448px	83.9
4×ST-CNN 448px	84.1

Fine-grained image recognition with end-to-end feature encoding

Bilinear Convolutional Neural Networks

[T.-Y. Lin et al., ICCV 2015]

Fine-grained image recognition with end-to-end feature encoding

Qualitative results of Bilinear CNNs

Fine-grained image recognition by localization-classification subnetworks

Part-based R-CNNs

[Zhang et al., ECCV 2014]

Fine-grained image recognition by localization-classification subnetworks

Mask-CNN

Fine-grained image recognition by localization-classification subnetworks

Qualitative results of Mask-CNN

Fine-grained image recognition by localization-classification subnetworks

Recurrent CNN (RA-CNN)

[Fu et al., CVPR 2017]

Fine-grained image recognition by localization-classification subnetworks

Qualitative results of RA-CNN

[Fu et al., CVPR 2017]

Fine-grained image recognition by localization-classification subnetworks

Multiple attention CNNs (MA-CNN)

[Zheng et al., ICCV 2017]

Fine-grained image recognition by localization-classification subnetworks

(a) CUB-Birds

(b) Stanford-Cars

(c) FGVC-Aircraft

Qualitative results of MA-CNN

Person re-identification

Figures are courtesy of [Li et al., CVPR 2014].

Vehicle re-identification

Gallery

Figures are courtesy of [Liu et al., CVPR 2016].

Vehicle re-identification

Vehicle re-identification

Our RNN-HA

Qualitative results

Clothes retrieval

Consumer-to-shop retrieval

In-shop retrieval

Figures are courtesy of Z. Liu.
Product recognition — Inventory robot

Product recognition — Automatic checkout

Product recognition — Automatic Check-Out (ACO)

Product recognition — Automatic Check-Out (ACO)

https://rpc-dataset.github.io/

http://www.weixiushen.com/

Comparisons with other related datasets in the literature

https://rpc-dataset.github.io/

The images and supervisions

(a) Easy mode.

(b) Medium mode.

(c) Hard mode.

(a) Examples of bottle-like SKUs.

(b) Examples of bag-like SKUs.

https://rpc-dataset.github.io/

Our proposed baseline

https://rpc-dataset.github.io/

IaIII I COUILO

Table 3. Experimental results of the ACO task on our RPC dataset.

Clutter mode	Methods	$cAcc (\uparrow)$	$ACD(\downarrow)$	$mCCD (\downarrow)$	$mCIoU(\uparrow)$	mAP50 (†)	$mmAP(\uparrow)$
Easy	Single	0.03%	8.12	1.14	2.98%	0.07%	0.01%
	Syn	18.49%	2.58	0.37	69.33%	81.51%	56.39%
	Render	63.19%	0.72	0.11	90.64%	96.21%	77.65%
	Syn+Render	73.17%	0.49	0.07	93.66%	97.34%	79.01%
Medium	Single	0.00%	16.10	1.33	1.93%	0.05%	0.01%
	Syn	6.54%	4.33	0.37	68.61%	79.72%	51.75%
	Render	43.02%	1.24	0.11	90.64%	95.83%	72.53%
	Syn+Render	54.69%	0.90	0.08	92.95%	96.56%	73.24%
Hard	Single	0.00%	20.05	1.18	0.66%	0.05%	0.01%
	Syn	2.91%	5.94	0.34	70.25%	80.98%	53.11%
	Render	31.01%	1.77	0.10	90.41%	95.18%	71.56%
	Syn+Render	42.48%	1.28	0.07	93.06%	96.45%	72.72%
Averaged	Single	0.01%	13.10	1.09	1.20%	0.06%	0.01%
	Syn	9.27%	4.27	0.35	69.65%	80.66%	53.08%
	Render	45.60%	1.25	0.10	90.58%	95.50%	72.76%
	Syn+Render	56.68%	0.89	0.07	93.19%	96.57%	73.83%

https://rpc-dataset.github.io/

Possible research directions on our dataset

- ☑ Online learning for the ACO problem
- Multi-category object counting (with limited training samples)
- **I** Using mixed supervision from the checkout images
- Few-shot / weakly-supervised object detection
- ☑ And many more ...

New developments of fine-grained

Fine-grained images with languages

[Xu et al., CVPR 2018]

Fine-grained images with languages

[X. He and Y. Peng, CVPR 2017]

Few-shot fine-grained (FSFG) image recognition

[Wei et al., IEEE TIP, 2019]

Illustration of FSFG

[Wei et al., IEEE TIP, 2019]

Learning strategy

A exemplar-to-classifier mapping function is required:

$$\mathcal{E} \xrightarrow{M} F_{\mathcal{E}}$$
.

The training objective function:

$$\min_{\lambda} \mathop{E}_{\{\mathcal{E},\mathcal{Q}\}\sim\mathcal{B}} \left\{ \mathcal{L} \left(F_{\mathcal{E}} \circ \mathcal{Q} \right) \right\}$$

Overview structure of our FSFG model

[Wei et al., IEEE TIP, 2019]

- X.-S. Wei, J.-H. Luo, J. Wu, and Z.-H. Zhou. Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval. IEEE TIP, 2017, 26(6): 2868-2881.
- C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-UCSD birds-200-2011 dataset. Tech. Report CNS-TR-2011-001 (2011).
- J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D object representations for fine-grained categorization. In ICCV Workshop, Sydney, Australia, Dec. 2013.
- X.-S. Wei, C.-L. Zhang, Y. Li, C.-W. Xie, J. Wu, C. Shen, and Z.-H. Zhou. Deep Descriptor Transforming for Image Co-Localization. In IJCAI, Melbourne, Australia, 2017, pp. 3048-3054.
- N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based R-CNNs for fine-grained category detection. In ECCV, Part I, LNCS 8689, Springer, Switzerland, Zürich, Switzerland, Sept. 2014, pp. 834–849
- M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In NIPS, Montréal, Canada, Dec. 2015, pp. 2008-2016.
- □ T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition. In ICCV, Sandiago, Chile, Dec. 2015, pp. 1449–1457.

- X.-S. Wei, C.-W. Xie, J. Wu, and C. Shen. Mask-CNN: Localizing Parts and Selecting Descriptors for Fine-Grained Bird Species Categorization. Pattern Recognition, 2018, 76:704-714.
- T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. AttnGAN: Fine-Grained Text to Image Generation With Attentional Generative Adversarial Networks. In CVPR, Salt Lake City, Jun. 2018, pp. 1316-1324.
- Y. Zhang, X.-S. Wei, J. Wu, J. Cai, J. Lu, V.-A. Nguyen, and M. N. Do. Weakly Supervised Fine-Grained Categorization with Part-Based Image Representation. IEEE TIP, 2016, 25(4): 1713-1725.
- J. Fu, H. Zheng, and T. Mei. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Finegrained Image Recognition. In CVPR, Honolulu, Jul. 2017, pp. 4438-4446.
- H. Zheng, J. Fu, T. Mei, and J. Luo. Learning Multi-Attention Convolutional Neural Network for Fine-Grained Image Recognition. In ICCV, Venice, Italy, Oct. 2017, pp. 5209-5217.
- X.-S. Wei, P. Wang, L. Liu, C. Shen, and J. Wu. Piecewise Classifier Mappings: Learning Fine-Grained Learners for Novel Categories with Few Examples. IEEE TIP, in press.
- M. Simon and E. Rodner. Neural activation constellations: Unsupervised part model discovery with convolutional networks. In ICCV, pages 1143–1151, 2015.

Acknowledgment

Co-authors

Prof. Zhi-Hua ZHOU

Prof. Jianxin WU

Prof. Chunhua SHEN

Dr. Peng WANG

Dr. Lingqiao LIU

Jian-Hao LUO

Chen-Wei XIE

Quan CUI

Lei YANG

Researchers and engineers hiring

We are hiring self-motivated interns / full-time researchers and engineers in <u>computer vision</u> and <u>deep learning</u>. If you are interested in, please directly send your CV to my email.

weixiushen@megvii.com

FGIA Tutorial @ICME 2019

Thanks all!

More resources can be found via: http://www.weixiushen.com/